Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

PAPER 28: ULTRASONIC WELDING OF BIOABSORBABLE PINS IN CANCELLOUS BONE FOR FRACTURE FIXATION



Abstract

Introduction: The SonicPin technology uses ultrasonic energy to weld polymer into bone (BoneWelding), thus forming a bond between implant and bone. The aim of this study was to determine the mechanical capabilities of the SonicPin in comparison to conventional techniques using generic mechanical load conditions.

Methods: Blocks of cancellous bone served as test specimens for generic tests. Two blocks respectively were fixed using either the SonicPin, a titanium cancellous bone screw (ASNIS) or a PLLA pin-screw system (Inion OTPS). The samples were then clamped into a test device and mechanically tested. Tests included pull-out, shear and 4-point-bending.

To examine the mechanical performance of the Son-icPin in a realistic fracture model 12 fresh frozen tibiae were osteotomized through the medial apex of the pla-fond, simulating a horizontal fracture of the medial malleolus. The tibiae were treated with either the Son-icPin or with 4.0-millimeter partially threaded titanium screws. Mechanical testing was performed by applying a compressive load 17 degrees from the long axis of the tibia to simulate supination-adduction loading.

Results: The bond between implant and bone exceeded the strength of the SonicPin itself. Using 2 SonicPins load levels were similar to those obtained with the cancellous screw or the PLLA fixation (p> 0,05).

Discussion: Ultrasonic welding of polymer into bone seems to be a promising technology to be used in orthopaedic surgery. Applying the SonicPin in fractures of the medial malleolus may be considered after slight modifications such as larger diameter or longer pins.

Correspondence should be addressed to Dr. D. Hak, Email: David.Hak@dhha.org