Abstract
Morsellised cortico-cancellous bone (MCB) is used extensively in impaction grafting procedures, such as the filling of cavitory defects on the femoral and acetabular sides during hip arthroplasty. Several experimental studies have attempted to describe the mechanical behaviour of MCB in compression and shear, and it has been found that it’s properties can be improved by washing and rigorous impaction at the time of surgery. However their focus has not been on the development of constitutive models that can be used in computational simulation.
The results of serial confined compaction tests are presented and used to develop constitutive models describing the non-linear elasto-plastic behaviour of MCB, as well as its time dependent visco-elastic behaviour. It is found that the elastic modulus, E of MCB increases linearly with applied pressure, p, with E achieving a value of around 30 MPa at a pressure of around 1 MPa. The plastic behaviour of MCB can be described using a Drucker Prager Cap yield criterion, capable of describing yielding of the graft in shear and compression. The time dependent visco-elastic behaviour of MCB can be accurately modelled using a spring and dashpot model that can be numerically expressed using a fourth order Prony series. The role of impaction in reducing subsequent plastic deformation was also investigated. The developed relationships allow the constitutive modelling of MCB in finite element simulations, for example of the acetabular construct following impaction grafting. The relationships also act as a gold standard against which to compare synthetic graft and graft extender materials.
Correspondence should be addressed to Mr Carlos Wigderowitz, Senior Lecturer, University Department of Orthopaedic and Trauma Surgery, Ninewells Hospital and Medical School, Dundee DD1 9SY.