Abstract
Lubricated metal-on-metal (MOM) bearing surfaces are not easily separated, unlike ceramic- or metal-on-UHMWPE (COP, MOP), due to interfacial forces and low diametric clearance that provides a ‘suction-fit’. In vivo videofluoroscopic studies have shown that patients with MOP/COP THRs exhibit separation of bearing surfaces by up to 3.1 mm during normal gait and 5.4 mm during active abduction while patients with MOM bearings do not. In this regard, MOM bearings may have similarities to constrained bearings with the potential to lower dislocation rates.
All patients under 70 years old undergoing primary THRs for primary osteoarthritis were prospectively registered on a computer database. From 1993–8, patients were offered a 28 mm COP bearing. After 1998, as part of a clinical trial, a 28 mm MOM bearing was inserted instead. For all cases, we used a metal-backed, uncemented acetabulum allowing a modular 10-degrees posteriorly augmented insert (Duraloc/PFC/Ultima, J& J) and the same cemented femoral stem (Ultima, J& J). The same experienced surgeon performed all operations using the posterior approach. Interfacial forces between bearing surfaces were assessed in vitro with a variable-speed-motor winch (APT) and a load-cell (E375/RDP) by recording peak-retaining-forces of bearing couples during separation with variable impact-distraction velocities. Statistical analysis used the Chi-square and student’s t-test.
We identified 140 COP THRs in 129 patients and 109 MOM THRs in 100 patients. Nine of 140 (6.4%) COP bearings dislocated within 3 months of surgery compared to 1 of 109 (0.9%) in the MOM group (p=0.024). No significant differences were identified between groups when comparing patient and prosthesis factors. In vitro assessment demonstrated that MOM bearing possessed interfacial retaining forces up to 30N more than COP bearing (p< 0.001).
This study demonstrates a significantly lower dislocation rate in THR with MOM bearing compared with COP. A potential explanation is the differential ease of separation that the two lubricated bearing couples possess due to interfacial retaining forces (viscous tension and ionic adhesive forces) exerted by the lubricating fluid.
The abstracts were prepared by Nico Verdoschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, Universitair Medisch Centrum, Orthopaedie / CSS1, Huispost 800, Postbus 9101, 6500 HB Nijmegen, Th. Craanenlaan 7, 6525 GH Nijmegen, The Netherlands.