Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

THE BEHAVIOR OF CROSS-LINKED, COMPRESSION MOLDED, AND REFERENCE POLYETHYLENE IN A KNEE WEAR APPARATUS



Abstract

Improving the wear resistance of polyethylene is considered paramount to improving knee implant longevity. Consequently, a range of polymer fabrication techniques have evolved in the quest for a highly wear resistant material. The objective of this study was to explore the wear performance of polyethylene as fabricated in a variety of ways.

The following materials were prepared, sterilised, artificially aged, and machined into wear specimens (n = 4 for each material): Compression molded GUR1050 with three levels of cross-linking (120 kGy, 65 kGy, and 0 kGy irradiation – control); ram extruded GUR4150 high modulus material; compression molded GUR4150 low modulus material; and HSS/PolySolidur/Hoechst reference polyethylene. Using a custom designed joint articular wear simulator, samples were loaded for 2 million cycles at a frequency of 0.5 Hz under loads of 2.1 kN. Tests were stopped every 250 000 cycles; and wear surfaces were examined microscopically for surface damage (pitting, cracking, delamination).

After 2 million loading cycles the following specimens were pitted and delaminated: 2 GUR1050 control samples, 3 GUR4150 high modulus specimens, and all 4 reference polyethylene specimens. Burnishing, but no pitting, was seen in all GUR1050 elevated cross-linked polyethylene specimens, and in all GUR4150 low modulus specimens.

The materials tested in this study represent a broad range of fabrication techniques. Differences in starting resin cannot fully account for the differences in wear behaviour seen between the groups; as damage was not limited to one resin group. The cross-linked specimens were melt-annealed, prior to cross-linking. It is possible that this processing step, and not the actual cross-linking, contributed to the improved wear performance of this group. However, of most interest is the comparable wear performance of GUR1050 cross-linked polyethylene and GUR4150 low modulus polyethylene suggesting that cross-linking polyethylene is not the only route towards obtaining a polyethylene with superior wear characteristics.

The abstracts were prepared by Nico Verdoschot. Correspondence should be addressed to him at Orthopaedic Research Laboratory, Universitair Medisch Centrum, Orthopaedie / CSS1, Huispost 800, Postbus 9101, 6500 HB Nijmegen, Th. Craanenlaan 7, 6525 GH Nijmegen, The Netherlands.