Abstract
Osteochondral lesions are frequent as a result of sport and daily activities.
The healing processes of these defects are prolonged and complicated and often leading to irreversible ostheo-arthritic changes. In this study, biotechanical and bioChemical approaches are being combined in an attempt to identify potential uses of biofabricated marine carbonate materials in biomedical applications, particularly as for remodeling cartilage and bone tissue. Biofabricated material was grafted into osteochondral induced defects in animals’ models during knee arthrotomy. Using histological sections, SEM, EDS studies it was revealed that the biofabricated, porous material is highly biocompatible. The graft was incorporated into the osteochondral defect area and followed by surface remodeling. After 4 months the interface and subchondral areas were been replaced by new cartilage and bone.
We believe that it is the first time that such biofabricated materials have been used for biomedical purposes. In face of the obvious environmental disadvantages of harvesting from limited natural resources, we propose the use of bio-engineered coralline and other materials such as those cultured by our group under field and laboratory conditions as a possible biomatrix for hard tissue remodeling.
The abstracts were prepared by Orah Naor. Correspondence should be addressed to him at the Israel Orthopaedic Association, PO Box 7845, Haifa 31074, Israel.