Abstract
The histodynamic response to long-term "non-traumatic" immobilisation was studied in young adult Beagle dogs by means of radiomorphometry and histomorphometry, the right forelimb being encased in plaster and the left forelimb serving as a control. The dogs were killed at two, four, six, eight, twelve, sixteen, twenty, twenty-four, thirty-two and forty weeks and the third metacarpal, radius, ulna and humerus removed for analysis of the contributions of the periosteal, haversian and endosteal envelopes to the bone loss at the mid-diaphysis. The bone mass responded to long-term immobilisation in three stages. First there was a rapid initial loss of bone, reaching its maximum (some 16 per cent of original mass) at six weeks, to which all three bone envelopes, to some extent, contributed. A rapid reversal followed, the bone mass approaching the control values between eight and twelve weeks after immobilisation. A second stage of slower but longer lasting bone loss ended twenty-four to thirty-two weeks after immobilisation; the periosteal envelope was the main contributor (80 to 90 per cent of the total loss). The third stage was characterised by maintenance of the bone mass which had been reduced by some 30 to 50 per cent of original values. This pattern was qualitatively similar in all four bones but the distal bones lost more bone than the proximal bones. The extent of resorption surface and the total histologically "active" periosteal envelope increased parallel to the phases of bone loss. The linear mineralisation rate did not differ significantly between the experimental and control sides.