header advert
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 10 | Pages 1348 - 1354
1 Oct 2011
Vanbiervliet J Bellemans J Verlinden C Luyckx J Labey L Innocenti B Vandenneucker H

Complications involving the patellofemoral joint, caused by malrotation of the femoral component during total knee replacement, are an important cause of persistent pain and failure leading to revision surgery. The aim of this study was to determine and quantify the influence of femoral component malrotation on patellofemoral wear, and to determine whether or not there is a difference in the rate of wear of the patellar component when articulated against oxidised zirconium (OxZr) and cobalt-chrome (CoCr) components. An in vitro method was used to simulate patellar maltracking for both materials. Both rates of wear and changes in height on the patellar articular surface were measured. The mean rates of wear measured were very small compared to standard tibiofemoral wear rates. When data for each femoral component material were pooled, the mean rate of wear was 0.19 mm3/Mcycle (sd 0.21) for OxZr and 0.34 mm3/Mcycle (sd 0.335) for CoCr. The largest change in height on each patella varied from -0.05 mm to -0.33 mm over the different configurations.

The results suggest that patellar maltracking due to an internally rotated femoral component leads to an increased mean patellar wear. Although not statistically significant, the mean wear production may be lower for OxZr than for CoCr components.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 737 - 742
1 May 2010
Verlinden C Uvin P Labey L Luyckx JP Bellemans J Vandenneucker H

Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either internally or externally. The contact mechanics were analysed using Tekscan. The results showed that excessive malrotation of the femoral component, both internally and externally, had a significant influence on the mechanics of contact. The contact area decreased with progressive maltracking, with a concomitant increase in contact pressure. The amount of contact area that carries more than the yield stress of ultra-high molecular weight polyethylene significantly increases with progressive maltracking. It is likely that the elevated pressures noted in malrotation could cause accelerated and excessive wear of the patellar button.