header advert
Results 1 - 1 of 1
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1024 - 1030
1 Nov 1997
Pazzaglia UE Andrini L Di Nucci A

We have used an experimental model employing the bent tail of rats to investigate the effects of mechanical forces on bones and joints. Mechanical strain could be applied to the bones and joints of the tail without direct surgical exposure or the application of pins and wires.

The intervertebral disc showed stretched annular lamellae on the convex side, while the annulus fibrosus on the concave side was pinched between the inner corners of the vertebral epiphysis. In young rats with an active growth plate, a transverse fissure appeared at the level of the hypertrophic cell layer or the primary metaphyseal trabecular zone. Metaphyseal and epiphyseal trabeculae on the compressed side were thicker and more dense than those of the distracted part of the vertebra.

In growing animals, morphometric analysis of hemiepiphyseal and hemimetaphyseal areas, and the corresponding trabecular bone density, showed significant differences between the compressed and distracted sides. No differences were observed in adult rats. We found no significant differences in osteoclast number between compressed and distracted sides in either age group. Our results provide quantitative evidence of the working of ‘Wolff’s law’.

The differences in trabecular density are examples of remodelling by osteoclasts and osteoblasts; our finding of no significant difference in osteoclast numbers between the hemiepiphyses in the experimental and control groups suggests that the response of living bone to altered strain is mediated by osteoblasts.