header advert
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 97 - 102
1 Jan 2022
Hijikata Y Kamitani T Nakahara M Kumamoto S Sakai T Itaya T Yamazaki H Ogawa Y Kusumegi A Inoue T Yoshida T Furue N Fukuhara S Yamamoto Y

Aims

To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score.

Methods

In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 327 - 335
1 May 2018
Sato Y Akagi R Akatsu Y Matsuura Y Takahashi S Yamaguchi S Enomoto T Nakagawa R Hoshi H Sasaki T Kimura S Ogawa Y Sadamasu A Ohtori S Sasho T

Objectives

To compare the effect of femoral bone tunnel configuration on tendon-bone healing in an anterior cruciate ligament (ACL) reconstruction animal model.

Methods

Anterior cruciate ligament reconstruction using the plantaris tendon as graft material was performed on both knees of 24 rabbits (48 knees) to mimic ACL reconstruction by two different suspensory fixation devices for graft fixation. For the adjustable fixation device model (Socket group; group S), a 5 mm deep socket was created in the lateral femoral condyle (LFC) of the right knee. For the fixed-loop model (Tunnel group; group T), a femoral tunnel penetrating the LFC was created in the left knee. Animals were sacrificed at four and eight weeks after surgery for histological evaluation and biomechanical testing.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 789 - 794
1 Jun 2014
Sukegawa K Kuniyoshi K Suzuki T Ogawa Y Okamoto S Shibayama M Kobayashi T Takahashi K

We conducted an anatomical study to determine the best technique for transfer of the anterior interosseous nerve (AIN) for the treatment of proximal ulnar nerve injuries. The AIN, ulnar nerve, and associated branches were dissected in 24 cadaver arms. The number of branches of the AIN and length available for transfer were measured. The nerve was divided just proximal to its termination in pronator quadratus and transferred to the ulnar nerve through the shortest available route. Separation of the deep and superficial branches of the ulnar nerve by blunt dissection alone, was also assessed. The mean number of AIN branches was 4.8 (3 to 8) and the mean length of the nerve available for transfer was 72 mm (41 to 106). The transferred nerve reached the ulnar nerve most distally when placed dorsal to flexor digitorum profundus (FDP). We therefore conclude that the AIN should be passed dorsal to FDP, and that the deep and superficial branches of the ulnar nerve require approximately 30 mm of blunt dissection and 20 mm of sharp dissection from the point of bifurcation to the site of the anastomosis.

The use of this technique for transfer of the AIN should improve the outcome for patients with proximal ulnar nerve injuries.

Cite this article: Bone Joint J 2014;96-B:789–94.