header advert
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 56-B, Issue 2 | Pages 331 - 339
1 May 1974
Elves MW Salama R

1. The humoral immune response of rats against sheep iliac bone grafts has been examined.

2. Fresh, marrow-containing grafts elicited a brisk and sustained antibody response. Attempts to wash out the marrow were not uniformly successful in removing cellular antigens from the grafts.

3. Decalcifying and freezing bone grafts at —20 degrees Celsius do not impair immunogenicity to any significant extent. Immunogenicity was found to be reduced in grafts subjected to freeze-drying.

4. Deproteinised Oswestry bone grafts and Kiel grafts gave rise to antibody production in a few recipients, and in the case of the former this response did not occur until after six or seven weeks from grafting.

5. The highest degree of osteogenesis in composite bone xenograft-autografts was found by Salama and colleagues (1973) to occur in Oswestry bone grafts. It is suggested that osteogenesis in xenografts may be impaired by an immune response.

The Journal of Bone & Joint Surgery British Volume
Vol. 56-B, Issue 1 | Pages 178 - 185
1 Feb 1974
Elves MW

1. A comparative study has been made of the major transplantation antigens present on the chondrocyte isolated from articular cartilage of the sheep and lymphocytes from the cartilage donors.

2. It has been shown that the chondrocyte possesses antigens of the major histocompatibility system in common with the lymphocyte.

3. In order to demonstrate the similarity between the antigen structure of the chondrocyte and the lymphocyte it was necessary to treat cartilage cells with papain after isolation in order to remove the matrix more completely. Failure to do this led to an apparent deficit of antigens on the chondrocyte.

4. It was found that lysis of cells by antibodies was slower when chondrocytes were the target cells than when lymphocytes were used. It is concluded that this is due to a protective role of remaining cartilage matrix.