Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 66 - 73
1 May 2024
Chaudhry F Daud A Greenberg A Braunstein D Safir OA Gross AE Kuzyk PR

Aims

Pelvic discontinuity is a challenging acetabular defect without a consensus on surgical management. Cup-cage reconstruction is an increasingly used treatment strategy. The present study evaluated implant survival, clinical and radiological outcomes, and complications associated with the cup-cage construct.

Methods

We included 53 cup-cage construct (51 patients) implants used for hip revision procedures for pelvic discontinuity between January 2003 and January 2022 in this retrospective review. Mean age at surgery was 71.8 years (50.0 to 92.0; SD 10.3), 43/53 (81.1%) were female, and mean follow-up was 6.4 years (0.02 to 20.0; SD 4.6). Patients were implanted with a Trabecular Metal Revision Shell with either a ZCA cage (n = 12) or a TMARS cage (n = 40, all Zimmer Biomet). Pelvic discontinuity was diagnosed on preoperative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed, with failure defined as revision of the cup-cage reconstruction.


The Bone & Joint Journal
Vol. 101-B, Issue 1_Supple_A | Pages 46 - 52
1 Jan 2019
León SA Mei XY Safir OA Gross AE Kuzyk PR

Aims

The aim of this study was to report the outcome of femoral condylar fresh osteochondral allografts (FOCA) with concomitant realignment osteotomy with a focus on graft survivorship, complications, reoperation, and function.

Patients and Methods

We identified 60 patients (16 women, 44 men) who underwent unipolar femoral condylar FOCA with concomitant realignment between 1972 and 2012. The mean age of the patients was 28.9 years (10 to 62) and the mean follow-up was 11.4 years (2 to 35). Failure was defined as conversion to total knee arthroplasty, revision allograft, or graft removal. Clinical outcome was evaluated using the modified Hospital for Special Surgery (mHSS) score.


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 607 - 613
1 May 2017
Mäkinen TJ Abolghasemian M Watts E Fichman SG Kuzyk P Safir OA Gross AE

Aims

It may not be possible to undertake revision total hip arthroplasty (THA) in the presence of massive loss of acetabular bone stock using standard cementless hemispherical acetabular components and metal augments, as satisfactory stability cannot always be achieved. We aimed to study the outcome using a reconstruction cage and a porous metal augment in these patients.

Patients and Methods

A total of 22 acetabular revisions in 19 patients were performed using a combination of a reconstruction cage and porous metal augments. The augments were used in place of structural allografts. The mean age of the patients at the time of surgery was 70 years (27 to 85) and the mean follow-up was 39 months (27 to 58). The mean number of previous THAs was 1.9 (1 to 3). All patients had segmental defects involving more than 50% of the acetabulum and seven hips had an associated pelvic discontinuity.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results.

Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used.

A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects.

This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7.


The Bone & Joint Journal
Vol. 96-B, Issue 11_Supple_A | Pages 11 - 16
1 Nov 2014
Khanna V Tushinski DM Drexler M Backstein DB Gross AE Safir OA Kuzyk PR

Cartilage defects of the hip cause significant pain and may lead to arthritic changes that necessitate hip replacement. We propose the use of fresh osteochondral allografts as an option for the treatment of such defects in young patients. Here we present the results of fresh osteochondral allografts for cartilage defects in 17 patients in a prospective study. The underlying diagnoses for the cartilage defects were osteochondritis dissecans in eight and avascular necrosis in six. Two had Legg-Calve-Perthes and one a femoral head fracture. Pre-operatively, an MRI was used to determine the size of the cartilage defect and the femoral head diameter. All patients underwent surgical hip dislocation with a trochanteric slide osteotomy for placement of the allograft. The mean age at surgery was 25.9 years (17 to 44) and mean follow-up was 41.6 months (3 to 74). The mean Harris hip score was significantly better after surgery (p < 0.01) and 13 patients had fair to good outcomes. One patient required a repeat allograft, one patient underwent hip replacement and two patients are awaiting hip replacement. Fresh osteochondral allograft is a reasonable treatment option for hip cartilage defects in young patients.

Cite this article: Bone Joint J 2014;96-B(11 Supple A):11–16.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 103 - 108
1 Nov 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein DJ Safir OA Gross AE

The conventional method for reconstructing acetabular bone loss at revision surgery includes using structural bone allograft. The disadvantages of this technique promoted the advent of metallic but biocompatible porous implants to fill bone defects enhancing initial and long-term stability of the acetabular component. This paper presents the indications, surgical technique and the outcome of using porous metal acetabular augments for reconstructing acetabular defects.

Cite this article: Bone Joint J 2013;95-B, Supple A:103–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 762 - 767
1 Jun 2012
Sternheim A Rogers BA Kuzyk PR Safir OA Backstein D Gross AE

The treatment of substantial proximal femoral bone loss in young patients with developmental dysplasia of the hip (DDH) is challenging. We retrospectively analysed the outcome of 28 patients (30 hips) with DDH who underwent revision total hip replacement (THR) in the presence of a deficient proximal femur, which was reconstructed with an allograft prosthetic composite. The mean follow-up was 15 years (8.5 to 25.5). The mean number of previous THRs was three (1 to 8). The mean age at primary THR and at the index reconstruction was 41 years (18 to 61) and 58.1 years (32 to 72), respectively. The indication for revision included mechanical loosening in 24 hips, infection in three and peri-prosthetic fracture in three.

Six patients required removal and replacement of the allograft prosthetic composite, five for mechanical loosening and one for infection. The survivorship at ten, 15 and 20 years was 93% (95% confidence interval (CI) 91 to 100), 75.5% (95% CI 60 to 95) and 75.5% (95% CI 60 to 95), respectively, with 25, eight, and four patients at risk, respectively. Additionally, two junctional nonunions between the allograft and host femur required bone grafting and plating.

An allograft prosthetic composite affords a good long-term outcome in the management of proximal femoral bone loss in revision THR in patients with DDH, while preserving distal host bone.