The diagnosis of a meniscal tear may require MRI, which is costly. Ultrasonography has been used to image the meniscus, but there are no reliable data on its accuracy. We performed a prospective study investigating the sensitivity and specificity of ultrasonography in comparison with MRI; the final outcome was determined at arthroscopy. The study included 35 patients with a mean age of 47 years (14 to 73). There was a sensitivity of 86.4% (95% confidence interval (CI) 75 to 97.7), a specificity of 69.2% (95% CI 53.7 to 84.7), a positive predictive value of 82.6% (95% CI 70 to 95.2) and a negative predictive value of 75% (95% CI 60.7 to 81.1) for ultrasonography. This compared favourably with a sensitivity of 86.4% (95% CI 75 to 97.7), a specificity of 100.0%, a positive predictive value of 100.0% and a negative predictive value of 81.3% (95% CI 74.7 to 87.9) for MRI. Given that the sensitivity matched that of MRI we feel that ultrasonography can reasonably be applied to confirm the clinical diagnosis before undertaking arthroscopy. However, the lower specificity suggests that there is still a need to improve the technique to reduce the number of false-positive diagnoses and thus to avoid unnecessary arthroscopy.
The aim of this study was to define the microcirculation of the normal rotator cuff during arthroscopic surgery and investigate whether it is altered in diseased cuff tissue. Blood flow was measured intra-operatively by laser Doppler flowmetry. We investigated six different zones of each rotator cuff during the arthroscopic examination of 56 consecutive patients undergoing investigation for impingement, cuff tears or instability; there were 336 measurements overall. The mean laser Doppler flowmetry flux was significantly higher at the edges of the tear in torn cuffs (43.1, 95% confidence interval (CI) 37.8 to 48.4) compared with normal cuffs (32.8, 95% CI 27.4 to 38.1; p = 0.0089). It was significantly lower across all anatomical locations in cuffs with impingement (25.4, 95% CI 22.4 to 28.5) compared with normal cuffs (p = 0.0196), and significantly lower in cuffs with impingement compared with torn cuffs (p <
0.0001). Laser Doppler flowmetry analysis of the rotator cuff blood supply indicated a significant difference between the vascularity of the normal and the pathological rotator cuff. We were unable to demonstrate a functional hypoperfusion area or so-called ‘critical zone’ in the normal cuff. The measured flux decreases with advancing impingement, but there is a substantial increase at the edges of rotator cuff tears. This might reflect an attempt at repair.