The aticularis genu (AG) is the least substantial and deepest muscle of the anterior compartment of the thigh and of uncertain significance. The aim of the study was to describe the anatomy of AG in cadaveric specimens, to characterize the relevance of AG in pathological distal femur specimens, and to correlate the anatomy and pathology with preoperative magnetic resonance imaging (MRI) of AG. In 24 cadaveric specimens, AG was identified, photographed, measured, and dissected including neurovascular supply. In all, 35 resected distal femur specimens were examined. AG was photographed and measured and its utility as a surgical margin examined. Preoperative MRIs of these cases were retrospectively analyzed and assessed and its utility assessed as an anterior soft tissue margin in surgery. In all cadaveric specimens, AG was identified as a substantial structure, deep and separate to vastus itermedius (VI) and separated by a clear fascial plane with a discrete neurovascular supply. Mean length of AG was 16.1 cm ( ± 1.6 cm) origin anterior aspect distal third femur and insertion into suprapatellar bursa. In 32 of 35 pathological specimens, AG was identified (mean length 12.8 cm ( ± 0.6 cm)). Where AG was used as anterior cover in pathological specimens all surgical margins were clear of disease. Of these cases, preoperative MRI identified AG in 34 of 35 cases (mean length 8.8 cm ( ± 0.4 cm)).Aims
Methods
To define the natural history of bone loss around a femoral prosthesis, the bone mineral content and bone mineral density were measured for each femur in 28 patients with unilateral total hip arthroplasty, 18 age-matched controls, and seven patients with unilateral osteoarthritis. The areas measured were inside the lesser trochanter and 4.8 cm distal to it. The contralateral hip served as the control. Three years after arthroplasty there was 40% loss in average bone mineral content inside the lesser trochanter, and 28% loss in average bone mineral content 4.8 cm distally in the medial cortex. At seven to 14 years after operation, patients had lost 40% of bone proximally and 49% distally. The data suggest that this may progress in a proximal-to-distal fashion, and could account for a 50% decrease in bone mass seven to 14 years after surgery.