Glenoid bone loss can be a challenging problem when revising
a shoulder arthroplasty. Precise pre-operative planning based on
plain radiographs or CT scans is essential. We have investigated
a new radiological classification system to describe the degree
of medialisation of the bony glenoid and that will indicate the
amount of bone potentially available for supporting a glenoid component.
It depends on the relationship between the most medial part of the
articular surface of the glenoid with the base of the coracoid process
and the spinoglenoid notch: it classifies the degree of bone loss
into three types. It also attempts to predict the type of glenoid reconstruction
that may be possible (impaction bone grafting, structural grafting
or simple non-augmented arthroplasty) and gives guidance about whether
a pre-operative CT scan is indicated. Inter-method reliability between plain radiographs and CT scans
was assessed retrospectively by three independent observers using
data from 39 randomly selected patients. Inter-observer reliability and test-retest reliability was tested
on the same cohort using Cohen's kappa statistics. Correlation of
the type of glenoid with the Constant score and its pain component
was analysed using the Kruskal-Wallis method on data from 128 patients.
Anatomical studies of the scapula were reviewed to explain the findings.Aims
Patients and Methods
The LockDown device (previously called Surgilig)
is a braided polyester mesh which is mostly used to reconstruct the
dislocated acromioclavicular joint. More than 11 000 have been implanted
worldwide. Little is known about the tissue reaction to the device
nor to its wear products when implanted in an extra-articular site
in humans. This is of importance as an adverse immunological reaction
could result in osteolysis or damage to the local tissues, thereby affecting
the longevity of the implant. We analysed the histology of five LockDown implants retrieved
from five patients over the last seven years by one of the senior
authors. Routine analysis was carried out in all five cases and
immunohistochemistry in one. The LockDown device acts as a scaffold for connective tissue
which forms an investing fibrous pseudoligament. The immunological
response at the histological level seems favourable with a limited
histiocytic and giant cell response to micron-sized wear particles.
The connective tissue envelope around the implant is less organised
than a native ligament. Cite this article: