The aim of this study was to determine the polyethylene wear rate of Phase 3 Oxford Unicompartmental Knee Replacement bearings and to investigate the effects of resin type and manufacturing process. A total of 63 patients with at least ten years’ follow-up with three bearing types (1900 resin machined, 1050 resin machined, and 1050 resin moulded) were recruited. Patients underwent full weight-bearing model-based radiostereometric analysis to determine the bearing thickness. The linear wear rate was estimated from the change in thickness divided by the duration of implantation.Objectives
Methods
The aim of this study was to determine the long-term risk of undergoing knee arthroplasty in a cohort of patients with meniscal tears who had undergone arthroscopic partial meniscectomy (APM). A retrospective national cohort of patients with a history of isolated APM was identified over a 20-year period. Patients with prior surgery to the same knee were excluded. The primary outcome was knee arthroplasty. Hazard ratios (HRs) were adjusted by patient age, sex, year of APM, Charlson comorbidity index, regional deprivation, rurality, and ethnicity. Risk of arthroplasty in the index knee was compared with the patient’s contralateral knee (with Aims
Patients and Methods
Unicompartmental knee arthroplasty (UKA) has
advantages over total knee arthroplasty but national joint registries report
a significantly higher revision rate for UKA. As a result, most
surgeons are highly selective, offering UKA only to a small proportion
(up to 5%) of patients requiring arthroplasty of the knee, and consequently
performing few each year. However, surgeons with large UKA practices
have the lowest rates of revision. The overall size of the practice
is often beyond the surgeon’s control, therefore case volume may
only be increased by broadening the indications for surgery, and
offering UKA to a greater proportion of patients requiring arthroplasty
of the knee. The aim of this study was to determine the optimal UKA usage
(defined as the percentage of knee arthroplasty practice comprised
by UKA) to minimise the rate of revision in a sample of 41 986 records
from the for National Joint Registry for England and Wales (NJR). UKA usage has a complex, non-linear relationship with the rate
of revision. Acceptable results are achieved with the use of 20%
or more. Optimal results are achieved with usage between 40% and
60%. Surgeons with the lowest usage (up to 5%) have the highest
rates of revision. With optimal usage, using the most commonly used
implant, five-year survival is 96% (95% confidence interval (CI)
94.9 to 96.0), compared with 90% (95% CI 88.4 to 91.6) with low
usage (5%) previously considered ideal. The rate of revision of UKA is highest with low usage, implying
the use of narrow, and perhaps inappropriate, indications. The widespread
use of broad indications, using appropriate implants, would give
patients the advantages of UKA, without the high rate of revision. Cite this article:
Whether to use total or unicompartmental knee
replacement (TKA/UKA) for end-stage knee osteoarthritis remains controversial.
Although UKA results in a faster recovery, lower rates of morbidity
and mortality and fewer complications, the long-term revision rate
is substantially higher than that for TKA. The effect of each intervention on
patient-reported outcome remains unclear. The aim of this study
was to determine whether six-month patient-reported outcome measures
(PROMs) are better in patients after TKA or UKA, using data from
a large national joint registry (NJR). We carried out a propensity score-matched cohort study which
compared six-month PROMs after TKA and UKA in patients enrolled
in the NJR for England and Wales, and the English national PROM
collection programme. A total of 3519 UKA patients were matched
to 10 557 TKAs. The mean six-month PROMs favoured UKA: the Oxford Knee Score
was 37.7 (95% confidence interval (CI) 37.4 to 38.0) for UKA and
36.1 (95% CI 35.9 to 36.3) for TKA; the mean EuroQol EQ-5D index
was 0.772 (95% CI 0.764 to 0.780) for UKA and 0.751 (95% CI 0.747
to 0.756) for TKA. UKA patients were more likely to achieve excellent
results (odds ratio (OR) 1.59, 95% CI 1.47 to 1.72, p <
0.001)
and to be highly satisfied (OR 1.27, 95% CI 1.17 to 1.39, p <
0.001), and
were less likely to report complications than those who had undergone
TKA. UKA gives better early patient-reported outcomes than TKA; these
differences are most marked for the very best outcomes. Complications
and readmission are more likely after TKA. Although the data presented
reflect the short-term outcome, they suggest that the high revision
rate for UKA may not be because of poorer clinical outcomes. These
factors should inform decision-making in patients eligible for either
procedure. Cite this article: