Pelvic obliquity is a common finding in adolescents
with cerebral palsy, however, there is little agreement on its measurement
or relationship with hip development at different gross motor function
classification system (GMFCS) levels. The purpose of this investigation was to study these issues in
a large, population-based cohort of adolescents with cerebral palsy
at transition into adult services. The cohort were a subset of a three year birth cohort (n = 98,
65M: 33F, with a mean age of 18.8 years (14.8 to 23.63) at their
last radiological review) with the common features of a migration
percentage greater than 30% and a history of adductor release surgery. Different radiological methods of measuring pelvic obliquity
were investigated in 40 patients and the angle between the acetabular
tear drops (ITDL) and the horizontal reference frame of the radiograph
was found to be reliable, with good face validity. This was selected
for further study in all 98 patients. The median pelvic obliquity was 4° (interquartile range 2° to
8°). There was a strong correlation between hip morphology and the
presence of pelvic obliquity (effect of ITDL on Sharpe’s angle in
the higher hip; rho 7.20 (5% confidence interval 5.59 to 8.81, p
<
0.001). This was particularly true in non-ambulant adolescents
(GMFCS IV and V) with severe pelvic obliquity, but was also easily
detectable and clinically relevant in ambulant adolescents with mild
pelvic obliquity. The identification of pelvic obliquity and its management deserves
closer scrutiny in children and adolescents with cerebral palsy. Cite this article:
We report the results of Vulpius transverse gastrocsoleus
recession for equinus gait in 26 children with cerebral palsy (CP),
using the Gait Profile Score (GPS), Gait Variable Scores (GVS) and
movement analysis profile. All children had an equinus deformity
on physical examination and equinus gait on three-dimensional gait
analysis prior to surgery. The pre-operative and post-operative
GPS and GVS were statistically analysed. There were 20 boys and
6 girls in the study cohort with a mean age at surgery of 9.2 years
(5.1 to 17.7) and 11.5 years (7.3 to 20.8) at follow-up. Of the
26 children, 14 had spastic diplegia and 12 spastic hemiplegia.
Gait function improved for the cohort, confirmed by a decrease in
mean GPS from 13.4° pre-operatively to 9.0° final review (p <
0.001). The change was 2.8 times the minimal clinically important
difference (MCID). Thus the improvements in gait were both clinically and
statistically significant. The transverse gastrocsoleus recession
described by Vulpius is an effective procedure for equinus gait
in selected children with CP, when there is a fixed contracture
of the gastrocnemius and soleus muscles. Cite this article:
We report the outcome of 28 patients with spina bifida who between 1989 and 2006 underwent 43 lower extremity deformity corrections using the Ilizarov technique. The indications were a flexion deformity of the knee in 13 limbs, tibial rotational deformity in 11 and foot deformity in 19. The mean age at operation was 12.3 years (5.2 to 20.6). Patients had a mean of 1.6 previous operations (0 to 5) on the affected limb. The mean duration of treatment with a frame was 9.4 weeks (3 to 26) and the mean follow-up was 4.4 years (1 to 9). There were 12 problems (27.9%), five obstacles (11.6%) and 13 complications (30.2%) in the 43 procedures. Further operations were needed in seven patients. Three knees had significant recurrence of deformity. Two tibiae required further surgery for recurrence. All feet were plantigrade and braceable. We conclude that the Ilizarov technique offers a refreshing approach to the complex lower-limb deformity in spina bifida.
We have tested the reliability of a recently reported classification system of hip morphology in adolescents with cerebral palsy in whom the triradiate cartilage was closed. The classification is a six-grade ordinal scale, based on the measurement of the migration percentage and an assessment of Shenton’s arch, deformity of the femoral head, acetabular deformity and pelvic obliquity. Four paediatric orthopaedic surgeons and four physiotherapists received training in the use of the classification which they applied to the assessment of 42 hip radiographs, read on two separate occasions. The inter- and intra-observer reliability was assessed using the intraclass correlation coefficient and found to be excellent, with it ranging from 0.88 to 0.94. The classification in our study was shown to be valid (based on migration percentage), and reliable. As a result we believe that it can now be used in studies describing the natural history of hip displacement in cerebral palsy, in outcome studies and in communication between clinicians.
There is much debate about the nature and extent of deformities in the proximal femur in children with cerebral palsy. Most authorities accept that increased femoral anteversion is common, but its incidence, severity and clinical significance are less clear. Coxa valga is more controversial and many authorities state that it is a radiological artefact rather than a true deformity. We measured femoral anteversion clinically and the neck-shaft angle radiologically in 292 children with cerebral palsy. This represented 78% of a large, population-based cohort of children with cerebral palsy which included all motor types, topographical distributions and functional levels as determined by the gross motor function classification system. The mean femoral neck anteversion was 36.5° (11° to 67.5°) and the mean neck-shaft angle 147.5° (130° to 178°). These were both increased compared with values in normally developing children. The mean femoral neck anteversion was 30.4° (11° to 50°) at gross motor function classification system level I, 35.5° (8° to 65°) at level II and then plateaued at approximately 40.0° (25° to 67.5°) at levels III, IV and V. The mean neck-shaft angle increased in a step-wise manner from 135.9° (130° to 145°) at gross motor function classification system level I to 163.0° (151° to 178°) at level V. The migration percentage increased in a similar pattern and was closely related to femoral deformity. Based on these findings we believe that displacement of the hip in patients with cerebral palsy can be explained mainly by the abnormal shape of the proximal femur, as a result of delayed walking, limited walking or inability to walk. This has clinical implications for the management of hip displacement in children with cerebral palsy.
Between July 2000 and April 2004, 19 patients with bilateral spastic cerebral palsy who required an assistive device to walk had combined lengthening-transfer of the medial hamstrings as part of multilevel surgery. A standardised physical examination, measurement of the Functional Mobility Scale score and video or instrumented gait analysis were performed pre- and post-operatively. Static parameters (popliteal angle, flexion deformity of the knee) and sagittal knee kinematic parameters (knee flexion at initial contact, minimum knee flexion during stance, mean knee flexion during stance) were recorded. The mean length of follow-up was 25 months (14 to 45). Statistically significant improvements in static and dynamic outcome parameters were found, corresponding to improvements in gait and functional mobility as determined by the Functional Mobility Scale. Mild hyperextension of the knee during gait developed in two patients and was controlled by adjustment of their ankle-foot orthosis. Residual flexion deformity >
10° occurred in both knees of one patient and was treated by anterior distal femoral physeal stapling. Two children also showed an improvement of one level in the Gross Motor Function Classification System.
Most children with spastic hemiplegia have high levels of function and independence but fixed deformities and gait abnormalities are common. The classification proposed by Winters et al is widely used to interpret hemiplegic gait patterns and plan intervention. However, this classification is based on sagittal kinematics and fails to consider important abnormalities in the transverse plane. Using three-dimensional gait analysis, we studied the incidence of transverse-plane deformity and gait abnormality in 17 children with group IV hemiplegia according to Winters et al before and after multilevel orthopaedic surgery. We found that internal rotation of the hip and pelvic retraction were consistent abnormalities of gait in group-IV hemiplegia. A programme of multilevel surgery resulted in predictable improvement in gait and posture, including pelvic retraction. In group IV hemiplegia pelvic retraction appeared in part to be a compensating mechanism to control foot progression in the presence of medial femoral torsion. Correction of this torsion can improve gait symmetry and function.
Torsional deformities of the tibia are common in children, but in the majority both the torsion and the associated disturbance of gait resolve without intervention. There are, however, a significant number of children and adults with neuromuscular disease who present with pathological tibial torsion, which may require surgical correction. We conducted a prospective study in two centres, to investigate the outcome of supramalleolar derotation osteotomy of the tibia, using internal fixation with the AO-ASIF T plate. A range of outcome variables was collected, prospectively, for 57 patients (91 osteotomies), including thigh foot angle, foot progression angle, post-operative complications and serial radiographs. Correction of thigh foot angle and foot progression angle was satisfactory in all patients. Three major complications were recorded; one aseptic nonunion, one fracture through the osteotomy site after removal of the plate and one distal tibial growth arrest. We found that supramalleolar derotation osteotomy of the tibia, with AO-ASIF T plate fixation is an effective method for the correction of torsional deformities of the tibia and the associated disturbances of gait in children and adults with neuromuscular disease, with a 5.3% risk of major complications.
Classifications of gait patterns in spastic diplegia have been either qualitative, based on clinical recognition, or quantitative, based on cluster analysis of kinematic data. Qualitative classifications have been much more widely used but concerns have been raised about the validity of classifications, which are not based on quantitative data. We have carried out a cross-sectional study of 187 children with spastic diplegia who attended our gait laboratory and devised a simple classification of sagittal gait patterns based on a combination of pattern recognition and kinematic data. We then studied the evolution of gait patterns in a longitudinal study of 34 children who were followed for more than one year and demonstrated the reliability of our classification.
We describe the results of a prospective study of 28 children with spastic diplegia and in-toed gait, who had bilateral femoral derotation osteotomies undertaken at either the proximal intertrochanteric or the distal supracondylar level of the femur. Preoperative clinical evaluation and three-dimensional movement analysis determined any additional soft-tissue surgery. Distal osteotomy was faster with significantly lower blood loss than proximal osteotomy. The children in the distal group achieved independent walking earlier than those in the proximal group (6.9 ± 1.3 v 10.7 ± 1.7 weeks; p <
0.001). Transverse plane kinematics demonstrated clinically significant improvements in rotation of the hip and the foot progression angle in both groups. Correction of rotation of the hip was from 17 ± 11° internal to 3 ± 9.5° external in the proximal group and from 9 ± 14° internal to 4 ± 12.4° external in the distal group. Correction of the foot progression angle was from a mean of 10.0 ± 17.3° internal to 13.0 ± 11.8° external in the proximal group (p <
0.001) compared with a mean of 7.0 ± 19.4° internal to 10.0 ± 12.2° external in the distal group (p <
0.001). Femoral derotation osteotomy at both levels gives comparable excellent correction of rotation of the hip and foot progression angles in children with spastic diplegia.
We studied prospectively the impact of a hip surveillance clinic on the management of spastic hip disease in children with cerebral palsy in a tertiary referral centre. Using a combination of primary clinical and secondary radiological screening we were able to detect spastic hip disease at an early stage in most children and to offer early surgical intervention. The principal effect on surgical practice was that more preventive surgery was carried out at a younger age and at a more appropriate stage of the disease. The need for reconstructive surgery has decreased and that for salvage surgery has been eliminated. Displacement of the hip in children with cerebral palsy meets specific criteria for a screening programme. We recommend that hip surveillance should become part of the routine management of children with cerebral palsy. The hips should be examined radiologically at 18 months of age in all children with bilateral cerebral palsy and at six- to 12-monthly intervals thereafter. A co-ordinated approach by orthopaedic surgeons and physiotherapists may be the key to successful implementation of this screening programme.
We assessed the medium-term outcome of three methods of isolated calf lengthening in cerebral palsy by clinical examination, observational gait analysis and, where appropriate, instrumented gait analysis. The procedures used were percutaneous lengthening of tendo Achillis, open Z-lengthening of tendo Achillis and lengthening of the gastrosoleus aponeurosis (Baker’s procedure). We reviewed 195 procedures in 134 children; 45 had hemiplegia, 65 diplegia and 24 quadriplegia. We established the incidence of calcaneus and recurrent equinus and identified ‘at-risk’ groups for each. At follow-up, 42% had satisfactory calf length, 22% had recurrent equinus and 36% calcaneus. The incidence of calcaneus in girls at follow-up was significantly higher (p = 0.002) while boys had an increased rate of recurrent equinus (p = 0.012). Children with diplegia who had surgery when aged eight years or younger had a 44% risk of calcaneus, while those over eight years had a 19% risk (p = 0.046). Percutaneous lengthening of tendo Achillis in diplegia was the least predictable, only 38% having a satisfactory outcome compared with 50% in the other procedures. The incidence of recurrent equinus in hemiplegic patients was 38%. Only 4% developed calcaneus. The type of surgery did not influence the outcome in patients with hemiplegia or quadriplegia. Severity of involvement, female gender, age at operation of less than eight years and percutaneous lengthening of tendo Achillis were ‘risk factors’ for calcaneus. Hemiplegia, male gender, and an aponeurosis muscle lengthening increased the risk of recurrent equinus.