header advert
Results 1 - 6 of 6
Results per page:
Bone & Joint Open
Vol. 3, Issue 9 | Pages 692 - 700
2 Sep 2022
Clement ND Smith KM Baron YJ McColm H Deehan DJ Holland J

Aims

The primary aim of our study was to assess the influence of age on hip-specific outcome following total hip arthroplasty (THA). Secondary aims were to assess health-related quality of life (HRQoL) and level of activity according to age.

Methods

A prospective cohort study was conducted. All patients were fitted with an Exeter stem with a 32 mm head on highly cross-linked polyethylene (X3RimFit) cemented acetabulum. Patients were recruited into three age groups: < 65 years, 65 to 74 years, and ≥ 75 years, and assessed preoperatively and at three, 12, 24, and 60 months postoperatively. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Harris Hip Score (HHS), and Hip disability and Osteoarthritis Outcome Score (HOOS), were used to assess hip-specific outcome. EuroQol five-dimension five-level questionnaire (EQ-5D-5L) and 36-Item Short Form Survey (SF-36) scores were used to assess HRQoL. The Lower Extremity Activity Scale (LEAS) and Timed Up and Go (TUG) were used to assess level of activity.


Bone & Joint Research
Vol. 8, Issue 6 | Pages 275 - 287
1 Jun 2019
Clement ND Bardgett M Merrie K Furtado S Bowman R Langton DJ Deehan DJ Holland J

Objectives

Our primary aim was to describe migration of the Exeter stem with a 32 mm head on highly crosslinked polyethylene and whether this is influenced by age. Our secondary aims were to assess functional outcome, satisfaction, activity, and bone mineral density (BMD) according to age.

Patients and Methods

A prospective cohort study was conducted. Patients were recruited into three age groups: less than 65 years (n = 65), 65 to 74 years (n = 68), and 75 years and older (n = 67). There were 200 patients enrolled in the study, of whom 115 were female and 85 were male, with a mean age of 69.9 years (sd 9.5, 42 to 92). They were assessed preoperatively, and at three, 12 and, 24 months postoperatively. Stem migration was assessed using Einzel-Bild-Röntgen-Analyse (EBRA). Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), EuroQol-5 domains questionnaire (EQ-5D), short form-36 questionnaire (SF-36,) and patient satisfaction were used to assess outcome. The Lower Extremity Activity Scale (LEAS), Timed Up and Go (TUG) test, and activPAL monitor (energy expelled, time lying/standing/walking and step count) were used to assess activity. The BMD was assessed in Gruen and Charnley zones.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 747 - 757
1 Jun 2013
Jameson SS Baker PN Mason J Rymaszewska M Gregg PJ Deehan DJ Reed MR

The popularity of cementless total hip replacement (THR) has surpassed cemented THR in England and Wales. This retrospective cohort study records survival time to revision following primary cementless THR with the most common combination (accounting for almost a third of all cementless THRs), and explores risk factors independently associated with failure, using data from the National Joint Registry for England and Wales. Patients with osteoarthritis who had a DePuy Corail/Pinnacle THR implanted between the establishment of the registry in 2003 and 31 December 2010 were included within analyses. There were 35 386 procedures. Cox proportional hazard models were used to analyse the extent to which the risk of revision was related to patient, surgeon and implant covariates. The overall rate of revision at five years was 2.4% (99% confidence interval 2.02 to 2.79). In the final adjusted model, we found that the risk of revision was significantly higher in patients receiving metal-on-metal (MoM: hazard ratio (HR) 1.93, p < 0.001) and ceramic-on-ceramic bearings (CoC: HR 1.55, p = 0.003) compared with the best performing bearing (metal-on-polyethylene). The risk of revision was also greater for smaller femoral stems (sizes 8 to 10: HR 1.82, p < 0.001) compared with mid-range sizes. In a secondary analysis of only patients where body mass index (BMI) data were available (n = 17 166), BMI ≥ 30 kg/m2 significantly increased the risk of revision (HR 1.55, p = 0.002). The influence of the bearing on the risk of revision remained significant (MoM: HR 2.19, p < 0.001; CoC: HR 2.09, p = 0.001). The risk of revision was independent of age, gender, head size and offset, shell, liner and stem type, and surgeon characteristics.

We found significant differences in failure between bearing surfaces and femoral stem size after adjustment for a range of covariates in a large cohort of single-brand cementless THRs. In this study of procedures performed since 2003, hard bearings had significantly higher rates of revision, but we found no evidence that head size had an effect. Patient characteristics, such as BMI and American Society of Anesthesiologists grade, also influence the survival of cementless components.

Cite this article: Bone Joint J 2013;95-B:747–57.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 12 | Pages 1611 - 1617
1 Dec 2012
Jameson SS Baker PN Mason J Gregg PJ Brewster N Deehan DJ Reed MR

Despite excellent results, the use of cemented total hip replacement (THR) is declining. This retrospective cohort study records survival time to revision following primary cemented THR using the most common combination of components that accounted for almost a quarter of all cemented THRs, exploring risk factors independently associated with failure. All patients with osteoarthritis who had an Exeter V40/Contemporary THR (Stryker) implanted before 31 December 2010 and recorded in the National Joint Registry for England and Wales were included in the analysis. Cox’s proportional hazard models were used to analyse the extent to which risk of revision was related to patient, surgeon and implant covariates, with a significance threshold of p < 0.01. A total of 34 721 THRs were included in the study. The overall seven-year rate of revision for any reason was 1.70% (99% confidence interval (CI) 1.28 to 2.12). In the final adjusted model the risk of revision was significantly higher in THRs with the Contemporary hooded component (hazard ratio (HR) 1.88, p < 0.001) than with the flanged version, and in smaller head sizes (< 28 mm) compared with 28 mm diameter heads (HR 1.50, p = 0.005). The seven-year revision rate was 1.16% (99% CI 0.69 to 1.63) with a 28 mm diameter head and flanged component. The overall risk of revision was independent of age, gender, American Society of Anesthesiologists grade, body mass index, surgeon volume, surgical approach, brand of cement/presence of antibiotic, femoral head material (stainless steel/alumina) and stem taper size/offset. However, the risk of revision for dislocation was significantly higher with a ‘plus’ offset head (HR 2.05, p = 0.003) and a hooded acetabular component (HR 2.34, p < 0.001).

In summary, we found that there were significant differences in failure between different designs of acetabular component and sizes of femoral head after adjustment for a range of covariates.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 6 | Pages 746 - 754
1 Jun 2012
Jameson SS Baker PN Mason J Porter ML Deehan DJ Reed MR

Modern metal-on-metal hip resurfacing has been widely performed in the United Kingdom for over a decade. However, the literature reports conflicting views of the benefits: excellent medium- to long-term results with some brands in specific subgroups, but high failure rates and local soft-tissue reactions in others. The National Joint Registry for England and Wales (NJR) has collected data on all hip resurfacings performed since 2003. This retrospective cohort study recorded survival time to revision from a resurfacing procedure, exploring risk factors independently associated with failure. All patients with a primary diagnosis of osteoarthritis who underwent resurfacing between 2003 and 2010 were included in the analyses. Cox’s proportional hazard models were used to analyse the extent to which the risk of revision was related to patient, surgeon and implant covariates.

A total of 27 971 hip resurfacings were performed during the study period, of which 1003 (3.59%) underwent revision surgery. In the final adjusted model, we found that women were at greater risk of revision than men (hazard ratio (HR) = 1.30, p = 0.007), but the risk of revision was independent of age. Of the implant-specific predictors, five brands had a significantly greater risk of revision than the Birmingham Hip Resurfacing (BHR) (ASR: HR = 2.82, p < 0.001, Conserve: HR = 2.03, p < 0.001, Cormet: HR = 1.43, p = 0.001, Durom: HR = 1.67, p < 0.001, Recap: HR = 1.58, p = 0.007). Smaller femoral head components were also significantly more likely to require revision (≤ 44 mm: HR = 2.14, p < 0.001, 45 to 47 mm: HR = 1.48, p = 0.001) than medium or large heads, as were operations performed by low-volume surgeons (HR = 1.36, p <  0.001). Once these influences had been removed, in 4873 male patients < 60 years old undergoing resurfacing with a BHR, the five-year estimated risk of revision was 1.59%.

In summary, after adjustment for a range of covariates we found that there were significant differences in the rate of failure between brands and component sizes. Younger male patients had good five-year implant survival when the BHR was used.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 4 | Pages 443 - 448
1 Apr 2011
Malviya A Walker LC Avery P Osborne S Weir DJ Foster HE Deehan DJ

Juvenile idiopathic arthritis (JIA) is a chronic disease of childhood; it causes joint damage which may require surgical intervention, often in the young adult. The aim of this study was to describe the long-term outcome and survival of hip replacement in a group of adult patients with JIA and to determine predictors of survival for the prosthesis. In this retrospective comparative study patients were identified from the database of a regional specialist adult JIA clinic. This documented a series of 47 hip replacements performed in 25 adult patients with JIA. Surgery was performed at a mean age of 27 years (11 to 47), with a mean follow-up of 19 years (2 to 36). The mean Western Ontario and McMaster Universities osteoarthritis index questionnaire (WOMAC) score at the last follow-up was 53 (19 to 96) and the mean Health Assessment Questionnaire score was 2.25 (0 to 3). The mean pain component of the WOMAC score (60 (20 to 100)) was significantly higher than the mean functional component score (46 (0 to 97)) (p = 0.02). Kaplan-Meier survival analysis revealed a survival probability of 46.6% (95% confidence interval 37.5 to 55.7) at 19 years, with a trend towards enhanced survival with the use of a cemented acetabular component and a cementless femoral component. This was not, however, statistically significant (acetabular component, p = 0.76, femoral component, p = 0.45). Cox’s proportional hazards regression analysis showed an implant survival rate of 54.9% at 19 years at the mean of covariates.

Survival of the prosthesis was significantly poorer (p = 0.001) in patients who had been taking long-term corticosteroids and significantly better (p = 0.02) in patients on methotrexate.