Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 6 - 13
1 Jan 2016
Cheung AC Banerjee S Cherian JJ Wong F Butany J Gilbert C Overgaard C Syed K Zywiel MG Jacobs JJ Mont MA

Recently, the use of metal-on-metal articulations in total hip arthroplasty (THA) has led to an increase in adverse events owing to local soft-tissue reactions from metal ions and wear debris. While the majority of these implants perform well, it has been increasingly recognised that a small proportion of patients may develop complications secondary to systemic cobalt toxicity when these implants fail. However, distinguishing true toxicity from benign elevations in cobalt ion levels can be challenging.

The purpose of this two part series is to review the use of cobalt alloys in THA and to highlight the following related topics of interest: mechanisms of cobalt ion release and their measurement, definitions of pathological cobalt ion levels, and the pathophysiology, risk factors and treatment of cobalt toxicity. Historically, these metal-on-metal arthroplasties are composed of a chromium-cobalt articulation.

The release of cobalt is due to the mechanical and oxidative stresses placed on the prosthetic joint. It exerts its pathological effects through direct cellular toxicity.

This manuscript will highlight the pathophysiology of cobalt toxicity in patients with metal-on-metal hip arthroplasties.

Take home message: Patients with new or evolving hip symptoms with a prior history of THA warrant orthopaedic surgical evaluation. Increased awareness of the range of systemic symptoms associated with cobalt toxicity, coupled with prompt orthopaedic intervention, may forestall the development of further complications.

Cite this article: Bone Joint J 2016;98-B:6–13.


The Bone & Joint Journal
Vol. 98-B, Issue 1 | Pages 14 - 20
1 Jan 2016
Zywiel MG Cherian JJ Banerjee S Cheung AC Wong F Butany J Gilbert C Overgaard C Syed K Jacobs JJ Mont MA

As adverse events related to metal on metal hip arthroplasty have been better understood, there has been increased interest in toxicity related to the high circulating levels of cobalt ions. However, distinguishing true toxicity from benign elevations in cobalt levels can be challenging. The purpose of this review is to examine the use of cobalt alloys in total hip arthroplasty, to review the methods of measuring circulating cobalt levels, to define a level of cobalt which is considered pathological and to review the pathophysiology, risk factors and treatment of cobalt toxicity. To the best of our knowledge, there are 18 published cases where cobalt metal ion toxicity has been attributed to the use of cobalt-chromium alloys in hip arthroplasty. Of these cases, the great majority reported systemic toxic reactions at serum cobalt levels more than 100 μg/L. This review highlights some of the clinical features of cobalt toxicity, with the goal that early awareness may decrease the risk factors for the development of cobalt toxicity and/or reduce its severity.

Take home message: Severe adverse events can arise from the release of cobalt from metal-on-metal arthroplasties, and as such, orthopaedic surgeons should not only be aware of the presenting problems, but also have the knowledge to treat appropriately.

Cite this article: Bone Joint J 2016;98-B:14–20.


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 31 - 37
1 Jan 2013
Zywiel MG Brandt J Overgaard CB Cheung AC Turgeon TR Syed KA

Symptomatic cobalt toxicity from a failed total hip replacement is a rare but devastating complication. It has been reported following revision of fractured ceramic components, as well as in patients with failed metal-on-metal articulations. Potential clinical findings include fatigue, weakness, hypothyroidism, cardiomyopathy, polycythaemia, visual and hearing impairment, cognitive dysfunction, and neuropathy. We report a case of an otherwise healthy 46-year-old patient, who developed progressively worsening symptoms of cobalt toxicity beginning approximately six months following synovectomy and revision of a fractured ceramic-on-ceramic total hip replacement to a metal-on-polyethylene bearing. The whole blood cobalt levels peaked at 6521 µg/l. The patient died from cobalt-induced cardiomyopathy. Implant retrieval analysis confirmed a loss of 28.3 g mass of the cobalt–chromium femoral head as a result of severe abrasive wear by ceramic particles embedded in the revision polyethylene liner. Autopsy findings were consistent with heavy metal-induced cardiomyopathy.

We recommend using new ceramics at revision to minimise the risk of wear-related cobalt toxicity following breakage of ceramic components.

Cite this article: Bone Joint J 2013;95-B:31–7.