Recently, the use of metal-on-metal articulations
in total hip arthroplasty (THA) has led to an increase in adverse
events owing to local soft-tissue reactions from metal ions and
wear debris. While the majority of these implants perform well,
it has been increasingly recognised that a small proportion of patients
may develop complications secondary to systemic cobalt toxicity
when these implants fail. However, distinguishing true toxicity
from benign elevations in cobalt ion levels can be challenging. The purpose of this two part series is to review the use of cobalt
alloys in THA and to highlight the following related topics of interest:
mechanisms of cobalt ion release and their measurement, definitions
of pathological cobalt ion levels, and the pathophysiology, risk factors
and treatment of cobalt toxicity. Historically, these metal-on-metal
arthroplasties are composed of a chromium-cobalt articulation. The release of cobalt is due to the mechanical and oxidative
stresses placed on the prosthetic joint. It exerts its pathological
effects through direct cellular toxicity. This manuscript will highlight the pathophysiology of cobalt
toxicity in patients with metal-on-metal hip arthroplasties. Take home message: Patients with new or evolving hip symptoms
with a prior history of THA warrant orthopaedic surgical evaluation.
Increased awareness of the range of systemic symptoms associated
with cobalt toxicity, coupled with prompt orthopaedic intervention, may
forestall the development of further complications. Cite this article:
As adverse events related to metal on metal hip
arthroplasty have been better understood, there has been increased
interest in toxicity related to the high circulating levels of cobalt ions.
However, distinguishing true toxicity from benign elevations in
cobalt levels can be challenging. The purpose of this review is
to examine the use of cobalt alloys in total hip arthroplasty, to
review the methods of measuring circulating cobalt levels, to define
a level of cobalt which is considered pathological and to review
the pathophysiology, risk factors and treatment of cobalt toxicity.
To the best of our knowledge, there are 18 published cases where
cobalt metal ion toxicity has been attributed to the use of cobalt-chromium
alloys in hip arthroplasty. Of these cases, the great majority reported
systemic toxic reactions at serum cobalt levels more than 100 μg/L.
This review highlights some of the clinical features of cobalt toxicity,
with the goal that early awareness may decrease the risk factors
for the development of cobalt toxicity and/or reduce its severity. Take home message: Severe adverse events can arise from the release
of cobalt from metal-on-metal arthroplasties, and as such, orthopaedic
surgeons should not only be aware of the presenting problems, but
also have the knowledge to treat appropriately. Cite this article:
Symptomatic cobalt toxicity from a failed total
hip replacement is a rare but devastating complication. It has been reported
following revision of fractured ceramic components, as well as in
patients with failed metal-on-metal articulations. Potential clinical
findings include fatigue, weakness, hypothyroidism, cardiomyopathy,
polycythaemia, visual and hearing impairment, cognitive dysfunction,
and neuropathy. We report a case of an otherwise healthy 46-year-old
patient, who developed progressively worsening symptoms of cobalt
toxicity beginning approximately six months following synovectomy
and revision of a fractured ceramic-on-ceramic total hip replacement
to a metal-on-polyethylene bearing. The whole blood cobalt levels
peaked at 6521 µg/l. The patient died from cobalt-induced cardiomyopathy.
Implant retrieval analysis confirmed a loss of 28.3 g mass of the
cobalt–chromium femoral head as a result of severe abrasive wear
by ceramic particles embedded in the revision polyethylene liner.
Autopsy findings were consistent with heavy metal-induced cardiomyopathy. We recommend using new ceramics at revision to minimise the risk
of wear-related cobalt toxicity following breakage of ceramic components. Cite this article: