Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 1 | Pages 32 - 35
1 Jan 2005
Diab M Clark JM Weis MA Eyre DR

In developmental dysplasia of the hip, a deficient acetabulum may be augmented by placing local autogenous iliac osseous graft, or the ilium itself, over the head of the femur with the expectation that the added bone will function as a bearing surface. We analysed this bone obtained en bloc during subsequent surgery which was performed for degenerative osteoarthritis in three patients at 6, 25 and 30 years after the initial augmentation procedure. In each patient, the augmentation comprised of red cancellous bone covered on its articulating surface by a distinct layer of white tissue. Microscopy of this tissue showed parallel rows of spindle-shaped cells lying between linearly arranged collagen bundles typical of joint capsule. Biochemical analysis showed type I collagen, the principal collagen of joint capsule and bone, with no significant quantity of type II collagen, the principal collagen of cartilage. While the added bone produced by acetabular augmentation was durable, histological and biochemical analyses suggested that it had not undergone cartilage metaplasia. The augmented acetabulum articulates with the head of the femur by means of an interposed hip joint capsule


Bone & Joint Research
Vol. 10, Issue 9 | Pages 558 - 570
1 Sep 2021
Li C Peng Z Zhou Y Su Y Bu P Meng X Li B Xu Y

Aims. Developmental dysplasia of the hip (DDH) is a complex musculoskeletal disease that occurs mostly in children. This study aimed to investigate the molecular changes in the hip joint capsule of patients with DDH. Methods. High-throughput sequencing was used to identify genes that were differentially expressed in hip joint capsules between healthy controls and DDH patients. Biological assays including cell cycle, viability, apoptosis, immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were performed to determine the roles of the differentially expressed genes in DDH pathology. Results. More than 1,000 genes were differentially expressed in hip joint capsules between healthy controls and DDH. Both gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that extracellular matrix (ECM) modifications, muscle system processes, and cell proliferation were markedly influenced by the differentially expressed genes. Expression of Collagen Type I Alpha 1 Chain (COL1A1), COL3A1, matrix metalloproteinase-1 (MMP1), MMP3, MMP9, and MMP13 was downregulated in DDH, with the loss of collagen fibres in the joint capsule. Expression of transforming growth factor beta 1 (TGF-β1) was downregulated, while that of TGF-β2, Mothers against decapentaplegic homolog 3 (SMAD3), and WNT11 were upregulated in DDH, and alpha smooth muscle actin (αSMA), a key myofibroblast marker, showed marginal increase. In vitro studies showed that fibroblast proliferation was suppressed in DDH, which was associated with cell cycle arrest in G0/G1 and G2/M phases. Cell cycle regulators including Cyclin B1 (CCNB1), Cyclin E2 (CCNE2), Cyclin A2 (CCNA2), Cyclin-dependent kinase 1 (CDK1), E2F1, cell division cycle 6 (CDC6), and CDC7 were downregulated in DDH. Conclusion. DDH is associated with the loss of collagen fibres and fibroblasts, which may cause loose joint capsule formation. However, the degree of differentiation of fibroblasts to myofibroblasts needs further study. Cite this article: Bone Joint Res 2021;10(9):558–570