Objectives. Eukaryotic translation initiation factor 3 (eIF3) is a multi-subunit complex that plays a critical role in translation initiation. Expression levels of eIF3 subunits are elevated or decreased in various cancers, suggesting a role for eIF3 in tumorigenesis. Recent studies have shown that the expression of the eIF3b subunit is elevated in bladder and prostate cancer, and eIF3b silencing inhibited glioblastoma growth and induced cellular apoptosis. In this study, we investigated the role of eIF3b in the survival of osteosarcoma cells. Methods. To investigate the effect of eIF3b on cell viability and apoptosis in osteosarcoma cells, we first examined the silencing effect of eIF3b in U2OS cells. Cell viability and apoptosis were examined by the Cell Counting Kit-8 (CCK-8) assay and Western blot, respectively. We also performed gene profiling to identify genes affected by eIF3b silencing. Finally, the effect of eIF3b on cell viability and apoptosis was confirmed in multiple osteosarcoma cell lines. Results. eIF3b silencing decreased cell viability and induced apoptosis in U2OS cells, and by using gene profiling we discovered that eIF3b silencing also resulted in the upregulation of
Between December 1995 and March 2003, 38 adult patients with intermediate or high-grade liposarcoma in a limb were treated by limb-sparing surgery and post-operative radiotherapy. The ten-year local recurrence-free survival was 83%, the ten-year metastasis-free survival 61%, the ten-year disease-free survival 51% and the ten-year overall survival 67%. Analysis of failure and success showed no association with the age of the patients, gender, the location of the primary tumour, the type of liposarcoma and the quality of resection. Our results indicate that liposarcoma may recur even ten years after the end of definitive therapy and may spread to unexpected sites as for soft-tissue sarcoma.