Exsanguination is the second most common cause
of death in patients who suffer severe trauma. The management of
haemodynamically unstable high-energy pelvic injuries remains controversial,
as there are no universally accepted guidelines to direct surgeons
on the ideal use of pelvic packing or early angio-embolisation.
Additionally, the optimal resuscitation strategy, which prevents
or halts the progression of the trauma-induced coagulopathy, remains
unknown. Although early and aggressive use of blood products in
these patients appears to improve survival, over-enthusiastic resuscitative
measures may not be the safest strategy. This paper provides an overview of the classification of pelvic
injuries and the current evidence on best-practice management of
high-energy pelvic fractures, including resuscitation, transfusion
of blood components, monitoring of coagulopathy, and procedural
interventions including pre-peritoneal pelvic packing, external
fixation and angiographic embolisation. Cite this article:
The purpose of this study was to assess the stability of a developmental pelvic reconstruction system which extends the concept of triangular osteosynthesis with fixation anterior to the lumbosacral pivot point. An unstable Tile type-C fracture, associated with a sacral transforaminal fracture, was created in synthetic pelves. The new concept was compared with three other constructs, including bilateral iliosacral screws, a tension band plate and a combined plate with screws. The pubic symphysis was plated in all cases. The pelvic ring was loaded to simulate single-stance posture in a cyclical manner until failure, defined as a displacement of 2 mm or 2°. The screws were the weakest construct, failing with a load of 50 N after 400 cycles, with maximal translation in the craniocaudal axis of 12 mm. A tension band plate resisted greater load but failure occurred at 100 N, with maximal rotational displacement around the mediolateral axis of 2.3°. The combination of a plate and screws led to an improvement in stability at the 100 N load level, but rotational failure still occurred around the mediolateral axis. The pelvic reconstruction system was the most stable construct, with a maximal displacement of 2.1° of rotation around the mediolateral axis at a load of 500 N.