We have tested the axial and torsional stability of femoral components after revision arthroplasty in a cadaver model, using impacted morsellised cancellous graft and cement. Each one of six matched pairs of fresh frozen human femora had either a primary or a revision prosthesis cemented in place. For the ‘revision’ experiments, all cancellous bone was removed from the proximal femur which was then over-reamed to create a smooth-walled cortical shell. An MTS servohydraulic test frame was used to apply axial and torsional loads to each specimen through the prosthetic femoral heads with the femur submerged in isotonic saline solution at 37°C. The mean subsidence was 0.27 ± 0.17 mm for the primary and 0.52 ± 0.30 mm for the revision groups. The difference was statistically significant (p <
0.025), but the mean subsidence was <
1 mm in both groups. The mean maximum torque before failure was 42.9 ± 26.9 N-m for the primary and 34.8± 20.7 N-m for the revision groups. This difference was not statistically significant (p >
0.015). Based on our results we suggest that revision of the femoral component using morsellised cancellous graft followed by cementing with a collarless prosthesis with a
We have investigated the role of the penetration of saline on the shear strength of the cement-stem interface for stems inserted at room temperature and those preheated to 37°C using a variety of commercial bone cements. Immersion in saline for two weeks at 37°C reduced interfacial strength by 56% to 88% after insertion at room temperature and by 28% to 49% after preheating of the stem. The reduction in porosity as a result of preheating ranged from 71% to 100%. Increased porosity correlated with a reduction in shear strength after immersion in saline (r = 0.839, p <
0.01) indicating that interfacial porosity may act as a fluid conduit.