Advertisement for orthosearch.org.uk
Results 1 - 20 of 42
Results per page:
Bone & Joint Research
Vol. 5, Issue 11 | Pages 569 - 576
1 Nov 2016
Akahane M Shimizu T Kira T Onishi T Uchihara Y Imamura T Tanaka Y

Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing bone marrow cells with dexamethasone and ascorbic acid improves osteogenic cell sheet structure. Bone Joint Res 2016;5:569–576. DOI: 10.1302/2046-3758.511.BJR-2016-0013.R1


Bone & Joint Research
Vol. 12, Issue 1 | Pages 5 - 8
1 Jan 2023
Im G

Cite this article: Bone Joint Res 2023;12(1):5–8.


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 2 | Pages 401 - 408
1 May 1968
Prasad GC Reynolds JJ

1. The use of a protein-free synthetic medium has provided a new technical approach to the study of fracture healing in vitro. 2. The tibiae of fourteen-day embryonic chicks were cut in half in the middle of the shaft, the fragments were placed in apposition and the explants grown in vitro for up to sixteen days. The process of bone repair was studied by means of histology and biochemical estimations. 3. The rate of growth in length of fractured bones was greater in an atmosphere containing 50 per cent of oxygen than in one with 20 per cent oxygen, thus emphasising the importance of an adequate oxygen supply for the regeneration of osteogenic cells. 4. The effect of varying the concentration of glucose in the medium was investigated. Two milligrams of glucose per millilitre was the most favourable for healing; higher levels caused fibroblastic changes in the cartilage cells and inhibited the proliferation of osteogenic cells at the fracture site. 5. Histological examination showed that many of the phenomena that occur in the repair of fractures in vivo can be reproduced in vitro in synthetic medium. Similar results were obtained whether the fracture was made in whole bones or in isolated shafts from which the cartilaginous ends had been removed; the latter are more favourable for biochemical study


The Journal of Bone & Joint Surgery British Volume
Vol. 55-B, Issue 3 | Pages 633 - 639
1 Aug 1973
Uhthoff HK

1. Cell differentiation around screws manufactured by two American and two Swiss companies and inserted into seventy femora in forty-one adult mongrel dogs has been observed over periods varying between two weeks and nine months. 2. This study reveals that, despite their excellent holding power, such screws are not everywhere in firm contact with the surrounding bone at the time of insertion. Indeed, only part of the thread surface facing the head of the screw touches the compact bone, all other surfaces being separated by a space up to 150 µ in thickness. 3. These spaces result both from the surgical technique employed and from the inaccurate measurements of drills, screws and taps. 4. Migrating cells invade these spaces during the first two weeks. In the absence of movement, these cells differentiate into osteogenic cells; movement leads to differentiation into fibroblasts, chondroblasts and osteoclasts, and failure of fixation ensues. In contrast, callus formation by osteogenic cells firmly anchors screws in four to five weeks, well before callus uniting the bone fragments has been established. 5. Extremities should be protected from undue stresses during those first few weeks after osteosynthesis, whatever the technique. 6. This study clearly demonstrates the importance oftesting screws in living bone to ascertain their holding power at all stages of fracture healing


Bone & Joint Research
Vol. 8, Issue 7 | Pages 333 - 341
1 Jul 2019
Grossner TL Haberkorn U Gotterbarm T

Objectives. Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote in vivo bone formation. One of the main problems of scaffold-based osteogenic cell cultures is the difficulty in quantifying the amount of newly produced extracellular mineral deposition, as a marker for new bone formation, without destroying the scaffold. In recent studies, we were able to show that . 99m. Tc-methylene diphosphonate (. 99m. Tc-MDP), a gamma radiation-emitting radionuclide, can successfully be applied as a reliable quantitative marker for mineral deposition as this tracer binds with high affinity to newly produced hydroxyapatite (HA). Methods. Within the present study, we evaluated whether this promising new method, using . 99m. Tc-hydroxydiphosphonate (. 99m. Tc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with . 99m. Tc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured. Results. We saw a higher uptake (up to 15-fold) of the tracer in the OSM group A compared with the CNTRL group B. Statistical analysis of the results (Student`s t-test) revealed a significantly higher amount of emitted gamma counts in the OSM group (p = 0.048). Qualitative and semi-quantitative analysis by Alizarin Red staining confirmed the presence of extracellular HA deposition in the OSM group. Conclusion. Our data indicate that . 99m. Tc-HDP labelling is a promising tool to track and quantify non-destructive local HA deposition in 3D stem cell cultures. Cite this article: T. L. Grossner, U. Haberkorn, T. Gotterbarm. . 99m. Tc-Hydroxydiphosphonate quantification of extracellular matrix mineralization in 3D human mesenchymal stem cell cultures. Bone Joint Res 2019;8:333–341. doi: 10.1302/2046-3758.87.BJR-2017-0248.R1


The Journal of Bone & Joint Surgery British Volume
Vol. 50-B, Issue 4 | Pages 866 - 873
1 Nov 1968
Bohr H Ravn HO Werner H

1. Transplantations of autografts and of Kiel bone to the iliac bone and to muscle tissue were performed in rabbits. Through labelling with two tetracycline compounds which have different fluorescent colours in ultraviolet light, bone formation between the labelling periods could be followed. 2. It was shown that bone formation between the fifth and the tenth day after transplantation to bone took place in about 50 per cent of the fresh autografts. Storage of the transplants in saline for one hour before replacement had little adverse effect, whereas exposure to air for one hour seemed to reduce the osteogenic effect of the grafts. Bone formation was not observed in grafts of Kiel bone during this period. 3. The fact that new bone formation in fresh autografts could be demonstrated even during the first four days after transplantation to bone indicates that osteogenic cells from the fresh autografts continue their activity under favourable conditions. This is supported by microradiographic and histological evidence. 4. The amount of callus which developed in close contact with the grafts during the first ten days after transplantation to bone was more pronounced both in fresh autografts and in autografts kept in saline than in autografts exposed to air for one hour. Callus developing at a later stage showed no significant difference between the various grafts, including those of Kiel bone. 5. In fresh autografts transplanted to muscle tissue callus formation could be demonstrated in most cases by the tenth day, indicating either survival of osteoblasts or the transformation of more primitive cells from the graft or from the host bone into osteogenic cells. No bone formation was observed when Kiel bone was embedded in muscle tissue


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 172 - 179
1 Feb 2023
Shimizu T Kato S Demura S Shinmura K Yokogawa N Kurokawa Y Yoshioka K Murakami H Kawahara N Tsuchiya H

Aims

The aim of this study was to investigate the incidence and characteristics of instrumentation failure (IF) after total en bloc spondylectomy (TES), and to analyze risk factors for IF.

Methods

The medical records from 136 patients (65 male, 71 female) with a mean age of 52.7 years (14 to 80) who underwent TES were retrospectively reviewed. The mean follow-up period was 101 months (36 to 232). Analyzed factors included incidence of IF, age, sex, BMI, history of chemotherapy or radiotherapy, tumour histology (primary or metastasis; benign or malignant), surgical approach (posterior or combined), tumour location (thoracic or lumbar; junctional or non-junctional), number of resected vertebrae (single or multilevel), anterior resection line (disc-to-disc or intravertebra), type of bone graft (autograft or frozen autograft), cage subsidence (CS), and local alignment (LA). A survival analysis of the instrumentation was performed, and relationships between IF and other factors were investigated using the Cox regression model.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 91 - 100
1 Mar 2024
Yamamoto Y Fukui T Sawauchi K Yoshikawa R Takase K Kumabe Y Maruo A Niikura T Kuroda R Oe K

Aims

Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells.

Methods

Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies.


The Journal of Bone & Joint Surgery British Volume
Vol. 40-B, Issue 2 | Pages 274 - 281
1 May 1958
Girgis FG Pritchard JJ

Cartilage formation was provoked in the skull vault of the young rat by making multiple incisions, and scraping the periosteum to reduce the blood supply to the injured area. The hypothesis that ischaemia induces osteogenic cells to produce cartilage in the course of fracture repair thus receives experimental support


The Journal of Bone & Joint Surgery British Volume
Vol. 63-B, Issue 2 | Pages 185 - 189
1 May 1981
Dekel S Lenthall G Francis M

The release of prostaglandins E and F from the tibiae of rabbits and the surrounding muscle in vitro after fracture and pinning, or pinning alone, has been compared to the release from unoperated tissues. The fractured tibiae released significantly more prostaglandins E and F than the control tibiae three to 14 days after operation. The pinned tibiae also released more of the two prostaglandins, although this was significant only after 14 days. Consequently it was only around the third day that the fractured tibiae released significantly more prostaglandin E than the tibiae which had been pinned, but not fractured. Similar results were obtained for the release from the muscles surrounding the tibiae. Prostaglandins are important mediators of inflammation as well as potent stimulators of bone resorption. Their increased formation in response to fracture and pinning may stimulate the vascular changes, bone resorption and the proliferation of osteogenic cells observed after trauma to bone


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 824 - 830
1 Sep 1997
Yasui N Sato M Ochi T Kimura T Kawahata H Kitamura Y Nomura S

We developed a rat model of limb lengthening to study the basic mechanism of distraction osteogenesis, using a small monolateral external fixator. In 11-week-old male rats we performed a subperiosteal osteotomy in the midshaft of the femur with distraction at 0.25 mm every 12 hours from seven days after operation. Radiological and histological examinations showed a growth zone of constant thickness in the middle of the lengthened segment, with formation of new bone at its proximal and distal ends. Osteogenic cells were arranged longitudinally along the tension vector showing the origin and the fate of individual cells in a single section. Typical endochondral bone formation was prominent in the early stage of distraction, but intramembraneous bone formation became the predominant mechanism of ossification at later stages. We also showed a third mechanism of ossification, ‘transchondroid bone formation’. Chondroid bone, a tissue intermediate between bone and cartilage, was formed directly by chondrocyte-like cells, with transition from fibrous tissue to bone occurring gradually and consecutively without capillary invasion. In situ hybridisation using digoxigenin-11-UTP-labelled complementary RNAs showed that the chondroid bone cells temporarily expressed type-II collagen mRNA. They did not show the classical morphological characteristics of chondrocytes, but were assumed to be young chondrocytes undergoing further differentiation into bone-forming cells. We found at least three different modes of ossification during bone lengthening by distraction osteogenesis. We believe that this is the first report of such a rat model, and have shown the validity of in situ hybridisation techniques for the study of the cellular and molecular mechanisms involved in distraction osteogenesis


The Journal of Bone & Joint Surgery British Volume
Vol. 45-B, Issue 1 | Pages 162 - 175
1 Feb 1963
Melcher AH Irving JT

1. The effect of implanting heterogenous anorganic bone, homogenous organic bone, autogenous compact bone from the iliac crest, and autogenous bony callus into circumscribed defects in the femur of albino rats of the Wistar strain is described. 2. Neither heterogenous anorganic bone nor homogenous organic bone appeared to induce new bone formation in a healing defect. 3. Some of the osteogenic cells of autogenous callus implants survived transplantation to a bone defect and gave rise to new bone formation. This did not occur when compact bone from autogenous iliac crest was implanted. 4. Implants of autogenous callus, autogenous compact bone, homogenous organic bone and heterogenous anorganic bone all impeded the normal development of host bone trabeculae in a healing bone defect, seemingly because they acted as physical barriers to the proliferating host callus. None of the implant materials appeared to suppress the healing reaction ofthe host. 5. Implanted homogenous organic bone was removed and replaced by host bone more quickly than was implanted heterogenous anorganic bone, and it appears to be the better material for grafting into bone defects. 6. Autogenous callus or autogenous cancellous bone is a superior implant material to autogenous compact bone and is the bone graft material of choice. 7. The absorption of all the implant materials used in this investigation was associated with the presence of multinucleated giant cells. 8. The activity of multinucleated giant cells may be influenced by the organic matrix of the material which is to be absorbed. 9. Except when fresh autogenous callus was implanted into the defects, the rate of healing in the grafted defects was slower than that in the control defects. In the defects grafted with fresh autogenous callus the healing rates of the control and grafted defects were the same


The Journal of Bone & Joint Surgery British Volume
Vol. 41-B, Issue 1 | Pages 160 - 179
1 Feb 1959
Chalmers J

1 . Fresh bone autografts to a muscle bed in the rat gave rise to vigorous new bone formation from about the fourth day. The graft took the form of a hollow ossicle with central bone marrow at eighteen days: it became progressively more regular in outline and was still present at six months. 2. Fresh bone homografts produced two separate phases of new bone formation–early and late. In the early phase non-lamellar woven bone appeared at about the fourth day, continued to grow until eight days, and subsequently died. It arose from osteogenic cells of the homograft. In the late phase, which developed in relation to a few grafts after four weeks, the new bone was lamellar in character, and remained closely applied to the graft surface. Evidence is presented that this bone arose by metaplasia of the host connective tissues at the graft site. There was a local inflammatory response to the bone homograft. 3. Both phases of homograft new bone formation were abolished if the animal was prepared by a skin homograft from the same donor four weeks before, but not if four months elapsed between the two grafting procedures. 4. Freeze-dried bone homografts did not give rise to the early phase of homograft new bone but produced a few examples of the late phase after five months. The inflammatory response was less intense with freeze-dried homografts than with fresh homografts. 5. Skin homografts three weeks after fresh bone homografts from the same donor underwent an early rejection at five to six days. 6. Skin homografts three weeks after freeze-dried bone homografts from the same donor had a mean survival time of twelve days, which was significantly longer than the mean survival time of l0·9 days in normal rats


Bone & Joint Research
Vol. 10, Issue 8 | Pages 514 - 525
2 Aug 2021
Chen C Kang L Chang L Cheng T Lin S Wu S Lin Y Chuang S Lee T Chang J Ho M

Aims

Osteoarthritis (OA) is prevalent among the elderly and incurable. Intra-articular parathyroid hormone (PTH) ameliorated OA in papain-induced and anterior cruciate ligament transection-induced OA models; therefore, we hypothesized that PTH improved OA in a preclinical age-related OA model.

Methods

Guinea pigs aged between six and seven months of age were randomized into control or treatment groups. Three- or four-month-old guinea pigs served as the young control group. The knees were administered 40 μl intra-articular injections of 10 nM PTH or vehicle once a week for three months. Their endurance as determined from time on the treadmill was evaluated before kill. Their tibial plateaus were analyzed using microcalculated tomography (μCT) and histological studies.


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1723 - 1734
1 Dec 2020
Fung B Hoit G Schemitsch E Godbout C Nauth A

Aims

The purpose of this study was to: review the efficacy of the induced membrane technique (IMT), also known as the Masquelet technique; and investigate the relationship between patient factors and technique variations on the outcomes of the IMT.

Methods

A systematic search was performed in CINAHL, The Cochrane Library, Embase, Ovid MEDLINE, and PubMed. We included articles from 1 January 1980 to 30 September 2019. Studies with a minimum sample size of five cases, where the IMT was performed primarily in adult patients (≥ 18 years old), in a long bone were included. Multivariate regression models were performed on patient-level data to determine variables associated with nonunion, postoperative infection, and the need for additional procedures.


Bone & Joint Research
Vol. 8, Issue 3 | Pages 107 - 117
1 Mar 2019
Lim ZXH Rai B Tan TC Ramruttun AK Hui JH Nurcombe V Teoh SH Cool SM

Objectives

Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done.

Methods

We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses.


Bone & Joint Research
Vol. 5, Issue 12 | Pages 610 - 618
1 Dec 2016
Abubakar AA Noordin MM Azmi TI Kaka U Loqman MY

In vivo animal experimentation has been one of the cornerstones of biological and biomedical research, particularly in the field of clinical medicine and pharmaceuticals. The conventional in vivo model system is invariably associated with high production costs and strict ethical considerations. These limitations led to the evolution of an ex vivo model system which partially or completely surmounted some of the constraints faced in an in vivo model system. The ex vivo rodent bone culture system has been used to elucidate the understanding of skeletal physiology and pathophysiology for more than 90 years. This review attempts to provide a brief summary of the historical evolution of the rodent bone culture system with emphasis on the strengths and limitations of the model. It encompasses the frequency of use of rats and mice for ex vivo bone studies, nutritional requirements in ex vivo bone growth and emerging developments and technologies. This compilation of information could assist researchers in the field of regenerative medicine and bone tissue engineering towards a better understanding of skeletal growth and development for application in general clinical medicine.

Cite this article: A. A. Abubakar, M. M. Noordin, T. I. Azmi, U. Kaka, M. Y. Loqman. The use of rats and mice as animal models in ex vivo bone growth and development studies. Bone Joint Res 2016;5:610–618. DOI: 10.1302/2046-3758.512.BJR-2016-0102.R2.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 6 - 9
1 Jan 2016
Fillingham Y Jacobs J

The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):6–9.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 500 - 511
1 Oct 2016
Raina DB Gupta A Petersen MM Hettwer W McNally M Tägil M Zheng M Kumar A Lidgren L

Objectives

We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells.

Materials and Methods

We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.


Bone & Joint Research
Vol. 6, Issue 8 | Pages 489 - 498
1 Aug 2017
Mifuji K Ishikawa M Kamei N Tanaka R Arita K Mizuno H Asahara T Adachi N Ochi M

Objectives

The objective of this study was to investigate the therapeutic effect of peripheral blood mononuclear cells (PBMNCs) treated with quality and quantity control culture (QQ-culture) to expand and fortify angiogenic cells on the acceleration of fracture healing.

Methods

Human PBMNCs were cultured for seven days with the QQ-culture method using a serum-free medium containing five specific cytokines and growth factors. The QQ-cultured PBMNCs (QQMNCs) obtained were counted and characterised by flow cytometry and real-time polymerase chain reaction (RT-PCR). Angiogenic and osteo-inductive potentials were evaluated using tube formation assays and co-culture with mesenchymal stem cells with osteo-inductive medium in vitro. In order to evaluate the therapeutic potential of QQMNCs, cells were transplanted into an immunodeficient rat femur nonunion model. The rats were randomised into three groups: control; PBMNCs; and QQMNCs. The fracture healing was evaluated radiographically and histologically.