Proximal femoral varus osteotomy improves the
biomechanics of the hip and can stimulate normal acetabular development
in a dysplastic hip. Medial closing wedge osteotomy remains the
most popular technique, but is associated with shortening of the
ipsilateral femur. We produced a trigonometric formula which may be used pre-operatively
to predict the resultant leg length discrepancy (LLD). We retrospectively
examined the influence of the choice of angle in a closing wedge
femoral osteotomy on LLD in 120 patients (135 osteotomies, 53% male,
mean age six years, (3 to 21), 96% caucasian) over a 15-year period
(1998 to 2013). A total of 16 of these patients were excluded due
to under or over varus correction. The patients were divided into
three age groups: paediatric (<
10 years), adolescent (10 to
16 years) and adult (>
16 years). When using the same saw blades
as in this series, the results indicated that for each 10° of angle
of resection the resultant LLD equates approximately to multiples
of 4 mm, 8 mm and 12 mm in the three age groups, respectively. Statistical testing of the 59 patients who had a complete set
of pre- and post-operative standing long leg radiographs, revealed
a Pearson’s correlation coefficient for predicted This study identified a geometric model that provided satisfactory
accuracy when using specific saw blades of known thicknesses for
this formula to be used in clinical practice. Cite this article:
We reviewed three infants with destructive osteomyelitis involving the proximal tibial epiphysis at a follow-up of eight to 22 years. All cases showed early radiographic destructive changes in the medial or lateral aspects of the epiphysis and metaphysis. Despite the ominous early appearance of the epiphysis, all cases showed spontaneous re-ossification of the epiphysis with restoration of the tibial condyle and preservation of joint congruity. The patients, however, developed a valgus or varus deformity which was treated satisfactorily with one to three proximal tibial osteotomies. The potential for regeneration of the epiphysis following infantile osteomyelitis of the proximal tibia suggests these cases should be treated expectantly with regard to joint congruity.
Septicaemia resulting from meningococcal infection is a devastating illness affecting children. Those who survive can develop late orthopaedic sequelae from growth plate arrests, with resultant complex deformities. Our aim in this study was to review the case histories of a series of patients with late orthopaedic sequelae, all treated by the senior author (CFB). We also describe a treatment strategy to address the multiple deformities that may occur in these patients. Between 1997 and 2009, ten patients (seven girls and three boys) were treated for late orthopaedic sequelae following meningococcal septicaemia. All had involvement of the lower limbs, and one also had involvement of the upper limbs. Each patient had a median of three operations (one to nine). Methods of treatment included a combination of angular deformity correction, limb lengthening and epiphysiodesis. All patients were skeletally mature at the final follow-up. One patient with bilateral below-knee amputations had satisfactory correction of her right amputation stump deformity, and has complete ablation of both her proximal tibial growth plates. In eight patients length discrepancy in the lower limb was corrected to within 1 cm, with normalisation of the mechanical axis of the lower limb. Meningococcal septicaemia can lead to late orthopaedic sequelae due to growth plate arrests. Central growth plate arrests lead to limb-length discrepancy and the need for lengthening procedures, and peripheral growth plate arrests lead to angular deformities requiring corrective osteotomies and ablation of the damaged physis. In addition, limb amputations may be necessary and there may be altered growth of the stump requiring further surgery. Long-term follow-up of these patients is essential to recognise and treat any recurrence of deformity.