In 2013, we introduced a specialized, centralized, and interdisciplinary team in our institution that applied a standardized diagnostic and treatment algorithm for the management of prosthetic joint infections (PJIs). The hypothesis for this study was that the outcome of treatment would be improved using this approach. In a retrospective analysis with a standard postoperative follow-up, 95 patients with a PJI of the hip and knee who were treated with a two-stage exchange between 2013 and 2017 formed the study group. A historical cohort of 86 patients treated between 2009 and 2011 not according to the standardized protocol served as a control group. The success of treatment was defined according to the Delphi criteria in a two-year follow-up.Aims
Patients and Methods
The mucopolysaccharidoses (MPS) are a group of
inherited lysosomal storage disorders with clinical manifestations relevant
to the orthopaedic surgeon. Our aim was to review the recent advances
in their management and the implications for surgical practice. The current literature about MPSs is summarised, emphasising
orthopaedic complications and their management. Recent advances in the diagnosis and management of MPSs include
the recognition of slowly progressive, late presenting subtypes,
developments in life-prolonging systemic treatment and potentially
new indications for surgical treatment. The outcomes of surgery
in these patients are not yet validated and some procedures have
a high rate of complications which differ from those in patients
who do not have a MPS. The diagnosis of a MPS should be considered in adolescents or
young adults with a previously unrecognised dysplasia of the hip.
Surgeons treating patients with a MPS should report their experience
and studies should include the assessment of function and quality
of life to guide treatment. Cite this article:
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles. Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure.