Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 820 - 823
1 Sep 1997
Madawi AA Solanki G Casey ATH Crockard HA

Transarticular screws at the C1 to C2 level of the cervical spine provide rigid fixation, but there is a danger of injury to a vertebral artery. The risk is related to the technical skill of the surgeon and to variations in local anatomy. We studied the grooves for the vertebral artery in 50 dry specimens of the second cervical vertebra (C2). They were often asymmetrical, and in 11 specimens one of the grooves was deep enough to reduce the internal height of the lateral mass at the point of fixation to ≤2.1 mm, and the width of the pedicle on the inferior surface of C2 to ≤2 mm. In such specimens, the placement of a transarticular screw would put the vertebral artery at extreme risk, and there is not enough bone to allow adequate fixation. Before any decision is made concerning the type of fixation to be used at C2 we recommend that a thin CT section be made at the appropriate angle to show both the depth and any asymmetry of the grooves for the vertebral artery


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims

We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury.

Materials and Methods

Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1541 - 1544
1 Nov 2009
Hosono N Miwa T Mukai Y Takenaka S Makino T Fuji T

Using the transverse processes of fresh porcine lumbar spines as an experimental model we evaluated the heat generated by a rotating burr of a high-speed drill in cutting the bone. The temperature at the drilled site reached 174°C with a diamond burr and 77°C with a steel burr. With water irrigation at a flow rate of 540 ml/hr an effective reduction in the temperature was achieved whereas irrigation with water at 180 ml/hr was much less effective. There was a significant negative correlation between the thickness of the residual bone and the temperature measured at its undersurface adjacent to the drilling site (p < 0.001).

Our data suggest that tissues neighbouring the drilled bone, especially nerve roots, can be damaged by the heat generated from the tip of a high-speed drill. Nerve-root palsy, one of the most common complications of cervical spinal surgery, may be caused by thermal damage to nerve roots arising in this manner.


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1274 - 1281
1 Sep 2014
Farhang K Desai R Wilber JH Cooperman DR Liu RW

Malpositioning of the trochanteric entry point during the introduction of an intramedullary nail may cause iatrogenic fracture or malreduction. Although the optimal point of insertion in the coronal plane has been well described, positioning in the sagittal plane is poorly defined.

The paired femora from 374 cadavers were placed both in the anatomical position and in internal rotation to neutralise femoral anteversion. A marker was placed at the apparent apex of the greater trochanter, and the lateral and anterior offsets from the axis of the femoral shaft were measured on anteroposterior and lateral photographs. Greater trochanteric morphology and trochanteric overhang were graded.

The mean anterior offset of the apex of the trochanter relative to the axis of the femoral shaft was 5.1 mm (sd 4.0) and 4.6 mm (sd 4.2) for the anatomical and neutralised positions, respectively. The mean lateral offset of the apex was 7.1 mm (sd 4.6) and 6.4 mm (sd 4.6), respectively.

Placement of the entry position at the apex of the greater trochanter in the anteroposterior view does not reliably centre an intramedullary nail in the sagittal plane. Based on our findings, the site of insertion should be about 5 mm posterior to the apex of the trochanter to allow for its anterior offset.

Cite this article: Bone Joint J 2014;96-B:1274–81.