Traumatic brachial plexus injury causes severe functional impairment
of the arm. Elbow flexion is often affected. Nerve surgery or tendon
transfers provide the only means to obtain improved elbow flexion.
Unfortunately, the functionality of the arm often remains insufficient.
Stem cell therapy could potentially improve muscle strength and
avoid muscle-tendon transfer. This pilot study assesses the safety
and regenerative potential of autologous bone marrow-derived mononuclear
cell injection in partially denervated biceps. Nine brachial plexus patients with insufficient elbow flexion
(i.e., partial denervation) received intramuscular escalating doses
of autologous bone marrow-derived mononuclear cells, combined with
tendon transfers. Effect parameters included biceps biopsies, motor
unit analysis on needle electromyography and computerised muscle tomography,
before and after cell therapy.Objectives
Methods
This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).Aims
Methods
Indocyanine green (ICG) fluorescence angiography is an emerging technique that can provide detailed anatomical information during surgery. The purpose of this study is to determine whether ICG fluorescence angiography can be used to evaluate the blood flow of the rotator cuff tendon in the clinical setting. Twenty-six patients were evaluated from October 2016 to December 2017. The participants were categorized into three groups based on their diagnoses: the rotator cuff tear group; normal rotator cuff group; and adhesive capsulitis group. After establishing a posterior standard viewing portal, intravenous administration of ICG at 0.2 mg/kg body weight was performed, and fluorescence images were recorded. The time from injection of the drug to the beginning of enhancement of the observed area was measured. The hypovascular area in the rotator cuff was evaluated, and the ratio of the hypovascular area to the anterolateral area of the rotator cuff tendon was calculated (hypovascular area ratio).Objectives
Methods
Follow-up radiographs are usually used as the
reference standard for the diagnosis of suspected scaphoid fractures. However,
these are prone to errors in interpretation. We performed a meta-analysis
of 30 clinical studies on the diagnosis of suspected scaphoid fractures,
in which agreement data between any of follow-up radiographs, bone scintigraphy,
magnetic resonance (MR) imaging, or CT could be obtained, and combined
this with latent class analysis to infer the accuracy of these tests
on the diagnosis of suspected scaphoid fractures in the absence
of an established standard. The estimated sensitivity and specificity
were respectively 91.1% and 99.8% for follow-up radiographs, 97.8%
and 93.5% for bone scintigraphy, 97.7% and 99.8% for MRI, and 85.2%
and 99.5% for CT. The results were generally robust in multiple
sensitivity analyses. There was large between-study heterogeneity
for the sensitivity of follow-up radiographs and CT, and imprecision
about their sensitivity estimates. If we acknowledge the lack of a reference standard for diagnosing
suspected scaphoid fractures, MRI is the most accurate test; follow-up
radiographs and CT may be less sensitive, and bone scintigraphy
less specific.