Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims

This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images.

Methods

The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm3). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis.


The Bone & Joint Journal
Vol. 103-B, Issue 9 | Pages 1497 - 1504
1 Sep 2021
Rotman D Ariel G Rojas Lievano J Schermann H Trabelsi N Salai M Yosibash Z Sternheim A

Aims

Type 2 diabetes mellitus (T2DM) impairs bone strength and is a significant risk factor for hip fracture, yet currently there is no reliable tool to assess this risk. Most risk stratification methods rely on bone mineral density, which is not impaired by diabetes, rendering current tests ineffective. CT-based finite element analysis (CTFEA) calculates the mechanical response of bone to load and uses the yield strain, which is reduced in T2DM patients, to measure bone strength. The purpose of this feasibility study was to examine whether CTFEA could be used to assess the hip fracture risk for T2DM patients.

Methods

A retrospective cohort study was undertaken using autonomous CTFEA performed on existing abdominal or pelvic CT data comparing two groups of T2DM patients: a study group of 27 patients who had sustained a hip fracture within the year following the CT scan and a control group of 24 patients who did not have a hip fracture within one year. The main outcome of the CTFEA is a novel measure of hip bone strength termed the Hip Strength Score (HSS).


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 598 - 604
1 May 2013
Monazzam S Bomar JD Dwek JR Hosalkar HS Pennock AT

We investigated the development of CT-based bony radiological parameters associated with femoroacetabular impingement (FAI) in a paediatric and adolescent population with no known orthopaedic hip complaints. We retrospectively reformatted and reoriented 225 abdominal CTs into standardised CT pelvic images with neutral pelvic tilt and inclination (244 female and 206 male hips) in patients ranging from two to 19 years of age (mean 10.4 years). The Tönnis angle, acetabular depth ratio, lateral centre–edge angle, acetabular version and α-angle were assessed.

Acetabular measurements demonstrated increased acetabular coverage with age and/or progressive ossification of the acetabulum. The α-angle decreased with age and/or progressive cortical bone development and resultant narrowing of the femoral neck. Cam and pincer morphology occurred as early as ten and 12 years of age, respectively, and their prevalence in the adolescent patient population is similar to that reported in the adult literature. Future aetiological studies of FAI will need to focus on the early adolescent population.

Cite this article: Bone Joint J 2013;95-B:598–604.