Recently, there has been considerable interest in quantifying
the associations between bony abnormalities around and in the hip
joint and osteoarthritis (OA). Our aim was to investigate the relationships
between acetabular undercoverage, acetabular overcoverage, and femoroacetabular
impingement (FAI) with OA of the hip, which currently remain controversial. A total of 545 cadaveric skeletons (1090 hips) from the Hamann-Todd
osteological collection were obtained. Femoral head volume (FHV),
acetabular volume (AV), the FHV/AV ratio, acetabular version, alpha
angle and anterior femoral neck offset (AFNO) were measured. A validated
grading system was used to quantify OA of the hip as minimal, moderate,
or severe. Multiple linear and multinomial logistic regression were
used to determine the factors that correlated independently with
the FHV, AV, and the FHV/AV ratio. Aims
Materials and Methods
The mechanical performance of the cement-in-cement interface in revision surgery has not been fully investigated. The quantitative effect posed by interstitial fluids and roughening of the primary mantle remains unclear. We have analysed the strength of the bilaminar cement-bone interface after exposure of the surface of the primary mantle to roughening and fluid interference. The end surfaces of cylindrical blocks of cement were machined smooth (Ra = 200 nm) or rough (Ra = 5 μm) and exposed to either different volumes of water and carboxymethylcellulose (a bone-marrow equivalent) or left dry. Secondary blocks were cast against the modelled surface. Monoblocks of cement were used as a control group. The porosity of the samples was investigated using micro-CT. Samples were exposed to a single shearing force to failure. The mean failure load of the monoblock control was 5.63 kN (95% confidence interval (CI) 5.17 to 6.08) with an estimated shear strength of 36 MPa. When small volumes of any fluid or large volumes were used, the respective values fell between 4.66 kN and 4.84 kN with no significant difference irrespective of roughening (p >
0.05). Large volumes of carboxymethylcellulose significantly weakened the interface. Roughening in this group significantly increased the strength with failure loads of 2.80 kN (95% CI 2.37 to 3.21) compared with 0.86 kN (95% CI 0.43 to 1.27) in the smooth variant. Roughening of the primary mantle may not therefore be as crucial as has been previously thought in clinically relevant circumstances.