Aims. The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Methods. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods. Results. The coating released gentamicin at > 10 × minimum inhibitory concentration (MIC) for sensitive staphylococcal strains within one hour thereby potentially giving effective prophylaxis for arthroplasty surgery, and showed > 99% elution of the antibiotic within the coating after 48 hours. There was total eradication of both planktonic bacteria and established bacterial biofilms of a panel of clinically relevant staphylococci. Mesenchymal
Fungal and mycobacterial periprosthetic joint infections (PJI) are rare events. Clinicians are wary of missing these diagnoses, often leading to the routine ordering of fungal and mycobacterial cultures on periprosthetic specimens. Our goal was to examine the utility of these cultures and explore a modern bacterial culture technique using bacterial blood culture bottles (BCBs) as an alternative. We performed a retrospective review of patients diagnosed with hip or knee PJI between 1 January 2010 and 31 December 2019, at the Mayo Clinic in Rochester, Minnesota, USA. We included patients aged 18 years or older who had fungal, mycobacterial, or both cultures performed together with bacterial cultures. Cases with positive fungal or mycobacterial cultures were reviewed using the electronic medical record to classify the microbiological findings as representing true infection or not.Aims
Methods
Increasing innovation in rapid prototyping (RP)
and additive manufacturing (AM), also known as 3D printing, is bringing
about major changes in translational surgical research. This review describes the current position in the use of additive
manufacturing in orthopaedic surgery. Cite this article: