Aims. The aim of this study was to compare the clinical and radiological outcomes of reverse shoulder arthroplasty (RSA) using small and standard baseplates in Asian patients, and to investigate the impact of a mismatch in the sizes of the glenoid and the baseplate on the outcomes. Methods. This was retrospective analysis of 50 and 33 RSAs using a standard (33.8 mm, ST group) and a small (29.5 mm, SM group) baseplate of the Equinoxe reverse shoulder system, which were undertaken between January 2017 and March 2021. Radiological evaluations included the size of the glenoid, the β-angle, the inclination of the glenoid component, inferior overhang, scapular notching, the location of the central cage in the baseplate within the vault and the mismatch in size between the glenoid and baseplate. Clinical evaluations included the range of motion (ROM) and functional scores. In subgroup analysis, comparisons were performed between those in whom the vault of the glenoid was perforated (VP group) and those in whom it was not perforated (VNP group). Results. Perforation of the vault of the glenoid (p = 0.018) and size mismatch in height (p < 0.001) and width (p = 0.013) were significantly more frequent in the ST group than in the SM group. There was no significant difference in the clinical scores and ROM in the two groups, two years postoperatively (all p > 0.05). In subgroup analysis, the VP group had significantly less inferior overhang (p = 0.009), more scapular notching (p = 0.018), and more size mismatch in height (p < 0.001) and width (p = 0.025) than the VNP group. Conclusion. In Asian patients with a
Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM. With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner.Aims
Methods
Scapular notching is a frequently observed radiographic phenomenon
in reverse shoulder arthroplasty (RSA), signifying impingement of
components. The purposes of this study were to evaluate the effect
of glenoid component size and glenosphere type on impingement-free
range of movement (ROM) for extension and internal and external
rotation in a virtual RSA model, and to determine the optimal configuration
to reduce the incidence of friction-type scapular notching. Preoperative CT scans obtained in 21 patients (three male, 18
female) with primary osteoarthritis were analyzed using modelling
software. Two concurrent factors were tested for impingement-free
ROM and translation of the centre of rotation: glenosphere diameter
(36 mm Aims
Materials and Methods