Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1342 - 1346
1 Oct 2016
Spencer-Gardner L Pierrepont J Topham M Baré J McMahon S Shimmin AJ

Aims

Accurate placement of the acetabular component during total hip arthroplasty (THA) is an important factor in the success of the procedure. However, the reported accuracy varies greatly and is dependent upon whether free hand or navigated techniques are used. The aim of this study was to assess the accuracy of an instrument system that incorporates 3D printed, patient-specific guides designed to optimise the placement of the acetabular component.

Patients and Methods

A total of 100 consecutive patients were prospectively enrolled and the accuracy of placement of the acetabular component was measured using post-operative CT scans.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 78 - 80
1 Jan 2016
Lee G

Patient specific instrumentation (PSI) uses advanced imaging of the knee (CT or MRI) to generate individualised cutting blocks aimed to make the procedure of total knee arthroplasty (TKA) more accurate and efficient. However, in this era of healthcare cost consciousness, the value of new technologies needs to be critically evaluated. There have been several comparative studies looking at PSI versus standard instrumentation. Most compare PSI with conventional instrumentation in terms of alignment in the coronal plane, operative time and surgical efficiency, cost effectiveness and short-term outcomes. Several systematic reviews and meta-analyses have also been published. PSI has not been shown to be superior compared with conventional instrumentation in its ability to restore traditional mechanical alignment in primary TKA. Most studies show comparative efficacy and no decrease in the number of outliers in either group. In terms of operative time and efficiency, PSI tended towards decreasing operative time, saving a mean of five minutes per patient (0 to 20). Furthermore, while some cost savings could be realised with less operative time and reduced instrumentation per patient, these savings were overcome by the cost of the CT/MRI and the cutting blocks. Finally, there was no evidence that PSI positively affected clinical outcomes at two days, two months, or two years. Consequently, current evidence does not support routine use of PSI in routine primary TKA. Cite this article: Bone Joint J 2016;98-B(1 Suppl A):78–80


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1270 - 1276
1 Jul 2021
Townshend DN Bing AJF Clough TM Sharpe IT Goldberg A

Aims

This is a multicentre, non-inventor, prospective observational study of 503 INFINITY fixed bearing total ankle arthroplasties (TAAs). We report our early experience, complications, and radiological and functional outcomes.

Methods

Patients were recruited from 11 specialist centres between June 2016 and November 2019. Demographic, radiological, and functional outcome data (Ankle Osteoarthritis Scale, Manchester Oxford Questionnaire, and EuroQol five-dimension five-level score) were collected preoperatively, at six months, one year, and two years. The Canadian Orthopaedic Foot and Ankle Society (COFAS) grading system was used to stratify deformity. Early and late complications and reoperations were recorded as adverse events. Radiographs were assessed for lucencies, cysts, and/or subsidence.


The Bone & Joint Journal
Vol. 102-B, Issue 6 | Pages 779 - 787
1 Jun 2020
Gupta S Griffin AM Gundle K Kafchinski L Zarnett O Ferguson PC Wunder J

Aims

Iliac wing (Type I) and iliosacral (Type I/IV) pelvic resections for a primary bone tumour create a large segmental defect in the pelvic ring. The management of this defect is controversial as the surgeon may choose to reconstruct it or not. When no reconstruction is undertaken, the residual ilium collapses back onto the remaining sacrum forming an iliosacral pseudarthrosis. The aim of this study was to evaluate the long-term oncological outcome, complications, and functional outcome after pelvic resection without reconstruction.

Methods

Between 1989 and 2015, 32 patients underwent a Type I or Type I/IV pelvic resection without reconstruction for a primary bone tumour. There were 21 men and 11 women with a mean age of 35 years (15 to 85). The most common diagnosis was chondrosarcoma (50%, n = 16). Local recurrence-free, metastasis-free, and overall survival were assessed using the Kaplan-Meier method. Patient function was evaluated using the Musculoskeletal Tumour Society (MSTS) and Toronto Extremity Salvage Score (TESS).


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 81 - 83
1 Jan 2016
Allen MM Pagnano MW

The cause of dissatisfaction following total knee arthroplasty (TKA) remains elusive. Much attention has been focused on static mechanical alignment as a basis for surgical success and optimising outcomes. More recently, research on both normal and osteoarthritic knees, as well as kinematically aligned TKAs, has suggested that other specific and dynamic factors may be more important than a generic target of 0 ± 3º of a neutral axis. Consideration of these other variables is necessary to understand ideal targets and move beyond generic results.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):81–3.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 95 - 99
1 Nov 2012
Barrack RL Ruh EL Williams BM Ford AD Foreman K Nunley RM

Patient specific cutting guides generated by preoperative Magnetic Resonance Imaging (MRI) of the patient’s extremity have been proposed as a method of improving the consistency of Total Knee Arthroplasty (TKA) alignment and adding efficiency to the operative procedure. The cost of this option was evaluated by quantifying the savings from decreased operative time and instrument processing costs compared to the additional cost of the MRI and the guide. Coronal plane alignment was measured in an unselected consecutive series of 200 TKAs, 100 with standard instrumentation and 100 with custom cutting guides. While the cutting guides had significantly lower total operative time and instrument processing time, the estimated $322 savings was overwhelmed by the $1,500 additional cost of the MRI and the cutting guide. All measures of coronal plane alignment were equivalent between the two groups. The data does not currently support the proposition that patient specific guides add value to TKA.


Bone & Joint 360
Vol. 4, Issue 1 | Pages 6 - 11
1 Feb 2015
Manktelow A Bloch B

This review examines the future of total hip arthroplasty, aiming to avoid past mistakes


Bone & Joint 360
Vol. 3, Issue 3 | Pages 9 - 13
1 Jun 2014
Waterson HB Philips JRA Mandalia VI Toms AD

Mechanical alignment has been a fundamental tenet of total knee arthroplasty (TKA) since modern knee replacement surgery was developed in the 1970s. The objective of mechanical alignment was to infer the greatest biomechanical advantage to the implant to prevent early loosening and failure. Over the last 40 years a great deal of innovation in TKA technology has been focusing on how to more accurately achieve mechanical alignment. Recently the concept of mechanical alignment has been challenged, and other alignment philosophies are being explored with the intention of trying to improve patient outcomes following TKA.

This article examines the evolution of the mechanical alignment concept and whether there are any viable alternatives.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 147 - 150
1 Nov 2012
Gustke K

Smart trials are total knee tibial trial liners with load bearing and alignment sensors that will graphically show quantitative compartment load-bearing forces and component track patterns. These values will demonstrate asymmetrical ligament balancing and misalignments with the medial retinaculum temporarily closed. Currently surgeons use feel and visual estimation of imbalance to assess soft-tissue balancing and tracking with the medial retinaculum open, which results in lower medial compartment loads and a wider anteroposterior tibial tracking pattern. The sensor trial will aid the total knee replacement surgeon in performing soft-tissue balancing by providing quantitative visual feedback of changes in forces while performing the releases incrementally. Initial experience using a smart tibial trial is presented.