Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 8 | Pages 1209 - 1213
1 Nov 2004
Calder JDF Buttery L Revell PA Pearse M Polak JM

Osteonecrosis of the femoral head usually affects young individuals and is responsible for up to 12% of total hip arthroplasties. The underlying pathophysiology of the death of the bone cells remains uncertain. We have investigated nitric oxide mediated apoptosis as a potential mechanism and found that steroid- and alcohol-induced osteonecrosis is accompanied by widespread apoptosis of osteoblasts and osteocytes. Certain drugs or their metabolites may have a direct cytotoxic effect on cancellous bone of the femoral head leading to apoptosis rather than purely necrosis


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 2 | Pages 274 - 277
1 Mar 2001
Drescher W Schneider T Becker C Hobolth J Rüther W Hansen ES Bünger C

Treatment with corticosteroids is a risk factor for non-traumatic avascular necrosis of the femoral head, but the pathological mechanism is poorly understood. Short-term treatment with high doses of methylprednisolone is used in severe neurotrauma and after kidney and heart transplantation. We investigated the effect of such treatment on the pattern of perfusion of the femoral head and of bone in general in the pig. We allocated 15 immature pigs to treatment with high-dose methylprednisolone (20 mg/kg per day intramuscularly for three days, followed by 10 mg/kg intramuscularly for a further 11 days) and 15 to a control group. Perfusion of the systematically subdivided femoral head, proximal femur, acetabulum, humerus, and soft tissues was determined by the microsphere technique. Blood flow in bone was severely reduced in the steroid-treated group. The reduction of flow affected all the segments and the entire epiphysis of the femoral head. No changes in flow were found in non-osseous tissue. Short-term treatment with high-dose methylprednisolone causes reduction of osseous blood flow which may be the pathogenetic factor in the early stage of steroid-induced osteonecrosis


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1274 - 1281
1 Sep 2014
Farhang K Desai R Wilber JH Cooperman DR Liu RW

Malpositioning of the trochanteric entry point during the introduction of an intramedullary nail may cause iatrogenic fracture or malreduction. Although the optimal point of insertion in the coronal plane has been well described, positioning in the sagittal plane is poorly defined.

The paired femora from 374 cadavers were placed both in the anatomical position and in internal rotation to neutralise femoral anteversion. A marker was placed at the apparent apex of the greater trochanter, and the lateral and anterior offsets from the axis of the femoral shaft were measured on anteroposterior and lateral photographs. Greater trochanteric morphology and trochanteric overhang were graded.

The mean anterior offset of the apex of the trochanter relative to the axis of the femoral shaft was 5.1 mm (sd 4.0) and 4.6 mm (sd 4.2) for the anatomical and neutralised positions, respectively. The mean lateral offset of the apex was 7.1 mm (sd 4.6) and 6.4 mm (sd 4.6), respectively.

Placement of the entry position at the apex of the greater trochanter in the anteroposterior view does not reliably centre an intramedullary nail in the sagittal plane. Based on our findings, the site of insertion should be about 5 mm posterior to the apex of the trochanter to allow for its anterior offset.

Cite this article: Bone Joint J 2014;96-B:1274–81.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 127 - 129
1 Jan 2007
Tang TT Lu B Yue B Xie XH Xie YZ Dai KR Lu JX Lou JR

The efficacy of β-tricalcium phosphate (β-TCP) loaded with bone morphogenetic protein-2 (BMP-2)-gene-modified bone-marrow mesenchymal stem cells (BMSCs) was evaluated for the repair of experimentally-induced osteonecrosis of the femoral head in goats.

Bilateral early-stage osteonecrosis was induced in adult goats three weeks after ligation of the lateral and medial circumflex arteries and delivery of liquid nitrogen into the femoral head. After core decompression, porous β-TCP loaded with BMP-2 gene- or β-galactosidase (gal)-gene-transduced BMSCs was implanted into the left and right femoral heads, respectively. At 16 weeks after implantation, there was collapse of the femoral head in the untreated group but not in the BMP-2 or β-gal groups. The femoral heads in the BMP-2 group had a normal density and surface, while those in the β-gal group presented with a low density and an irregular surface. Histologically, new bone and fibrous tissue were formed in the macropores of the β-TCP. Sixteen weeks after implantation, lamellar bone had formed in the BMP-2 group, but there were some empty cavities and residual fibrous tissue in the β-gal group. The new bone volume in the BMP-2 group was significantly higher than that in the β-gal group. The maximum compressive strength and Young’s modulus of the repaired tissue in the BMP-2 group were similar to those of normal bone and significantly higher than those in the β-gal group.

Our findings indicate that porous β-TCP loaded with BMP-2-gene-transduced BMSCs are capable of repairing early-stage, experimentally-induced osteonecrosis of the femoral head and of restoring its mechanical function.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 7 | Pages 967 - 971
1 Jul 2006
Westhoff B Krauspe R Kalke AE Hermsen D Kowall B Willers R Schneider U

Our aim was to investigate the relationship between urinary excretion of deoxypyridinoline (DPD) as a marker of bone resorption, and Perthes’ disease. There were 39 children with Perthes’ disease in the florid stage who collected first-morning urine samples at regular intervals of at least three months. The level of urinary DPD was analysed by chemiluminescence immunoassay and was correlated with the radiological stage of the disease as classified by Waldenström, and the severity of epiphyseal involvement according to the classification systems of Catterall and Herring. The urinary DPD levels of a group of 44 healthy children were used as a control.

The median urinary DPD/creatinine (CREA) ratio was significantly reduced (p < 0.0001) in the condensation stage and increased to slightly elevated values at the final stage (p = 0.05) when compared with that of the control group. Herring-C patients showed significantly lower median DPD/CREA ratios than Herring-B patients (p = 0.03). The significantly decreased median DPD/CREA ratio in early Perthes’ disease indicated a reduced bone turnover and supports the theory of a systemic aetiology. Urinary levels of DPD may therefore be used to monitor the course of Perthes’ disease.