Accurate quantitative measurements of
The main objective of this study is to analyze the penetration of bone cement in four different full cementation techniques of the tibial tray. In order to determine the best tibial tray cementation technique, we applied cement to 40 cryopreserved donor tibiae by four different techniques: 1) double-layer cementation of the tibial component and tibial bone with bone restrictor; 2) metallic cementation of the tibial component without bone restrictor; 3) bone cementation of the tibia with bone restrictor; and 4) superficial bone cementation of the tibia and metallic keel cementation of the tibial component without bone restrictor. We performed CT exams of all 40 subjects, and measured cement layer thickness at both levels of the resected surface of the epiphysis and the endomedular metaphyseal level.Aims
Methods
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods
The optimum cementing technique for the tibial
component in cemented primary total knee replacement (TKR) remains
controversial. The technique of cementing, the volume of cement
and the penetration are largely dependent on the operator, and hence
large variations can occur. Clinical, experimental and computational
studies have been performed, with conflicting results. Early implant
migration is an indication of loosening. Aseptic loosening is the
most common cause of failure in primary TKR and is the product of
several factors. Sufficient penetration of cement has been shown
to increase implant stability. This review discusses the relevant literature regarding all aspects
of the cementing of the tibial component at primary TKR. Cite this article:
Valgus high tibial osteotomy for osteoarthritis of the medial compartment of the knee can be performed using medial opening- and lateral closing-wedge techniques. The latter have been thought to offer greater initial stability. We measured and compared the stability of opening- and closing-wedge osteotomies fixed by TomoFix plates using radiostereometry in a series of 42 patients in a prospective, randomised clinical trial. There were no differences between the opening- and closing-wedge groups in the time to regain knee function and full weight-bearing. Pain and knee function were significantly improved in both groups without any differences between them. All the osteotomies united within one year. Radiostereometry showed no clinically relevant movement of bone or differences between either group. Medial opening-wedge high tibial osteotomy secured by a TomoFix plate offers equal stability to a lateral closing-wedge technique. Both give excellent initial stability and provide significantly improved knee function and reduction in pain, although the opening-wedge technique was more likely to produce the intended correction.
Clinical experience of impaction bone grafting for revision knee arthroplasty is limited, with initial stability of the tibial tray emerging as a major concern. The length of the stem and its diameter have been altered to improve stability. Our aim was to investigate the effect of the type of stem, support of the rim and graft impaction on early stability of the tray. We developed a system for impaction grafting of trays which we used with morsellised bone in artificial tibiae. Trays with short, long thick or long thin stems were implanted, with or without support of the rim. They were cyclically loaded while measuring relative movement. Long-stemmed trays migrated 4.5 times less than short-stemmed trays, regardless of diameter. Those with support migrated 2.8 times less than those without. The migration of short-stemmed trays correlated inversely with the density of the impacted groups. That of impaction-grafted tibial trays was in the range reported for uncemented primary trays. Movements of short-stemmed trays without cortical support were largest and sensitive to the degree of compaction of the graft. If support of the rim was sufficient or a long stem was used, impacted morsellised bone graft achieved adequate initial stability.
Narrow, well-defined radiolucent lines commonly observed at the bone-implant interface of unicompartmental knee replacement tibial components have been referred to as physiological radiolucencies. These should be distinguished from pathological radiolucencies, which are poorly defined, wide and progressive, and associated with loosening and infection. We studied the incidence and clinical significance of tibial radiolucent lines in 161 Oxford unicondylar knee replacements five years after surgery. All the radiographs were aligned with fluoroscopic control to obtain views parallel to the tibial tray to reveal the tibial bone-implant interface. We found that 49 knees (30%) had complete, 52 (32%) had partial and 60 (37%) had no radiolucent lines. There was no relationship between the incidence of radiolucent lines and patient factors such as gender, body mass index and activity, or operative factors including the status of the anterior cruciate ligament and residual varus deformity. Nor was any statistical relationship established between the presence of radiolucent lines and clinical outcome, particularly pain, assessed by the Oxford Knee score and the American Knee Society score. We conclude that radiolucent lines are common after Oxford unicompartmental knee replacement but that their aetiology remains unclear. Radiolucent lines were not a source of adverse symptoms or pain. Therefore, when attempting to identify a source of postoperative pain after Oxford unicompartmental knee replacement the presence of a physiological radiolucency should be ignored.
Components from 73 failed knee replacements (TKRs) consisting of rotating-platform, mobile-bearing and fixed-bearing implants were examined to assess the patterns of wear. The patterns were divided into low-grade (burnishing, abrasion and cold flow) and high-grade (scratching, pitting/metal embedding and delamination) to assess the severity of the wear of polyethylene. The rotating-platform group had a higher incidence of low-grade wear on the upper surface compared with the fixed-bearing group. By contrast, high-grade wear comprising scratching, pitting and third-body embedding was seen on the lower surface. Linear regression analysis showed a significant correlation of the wear scores between the upper and lower surfaces of the tibial insert (R2 = 0.29, p = 0.04) for the rotating-platform group, but no significant correlation was found for the fixed-bearing counterpart. This suggests that high-grade wear patterns on the upper surface are reduced with the rotating-platform design. However, the incidence of burnishing, pitting/third-body embedding and scratching wear patterns on the lower surface was higher compared with that in the fixed-bearing knee.
We have carried out a radiostereometric study of 50 patients (54 knees) with osteoarthritis of the knee who were randomly allocated to receive a cemented or a hydroxyapatite-coated femoral component for total knee replacement. The patients were also stratified to receive one of three types of articulating surface (standard, rotating platform, Freeman-Samuelson (FS)1000) all based on the Freeman-Samuelson design. The tibial components were cemented in all cases. Radiostereometry was performed post-operatively and at 3, 12 and 24 months. The analysis was restricted to rotation of the femoral component over time. After two years, rotation of the femoral components in the transverse, longitudinal and sagittal planes did not differ between the cemented and the hydroxyapatite-coated implants (p = 0.2 to 0.9). In total knee replacements with a rotating platform, the femoral component tended to tilt more posteriorly than in the other two designs, regardless of the choice of fixation (cemented or hydroxyapatite-coated, p = 0.04). The standard version of the femoral component, whether cemented or hydroxyapatite-coated, rotated more into valgus than was observed with the rotating-platform and FS1000 designs (p = 0.005). The increased constraint provided by the FS1000 component did not appear to have any adverse effect on fixation of the femoral component.
We prospectively reviewed 1000 consecutive patients who underwent a cementless, hydroxyapatite-coated, stemless, total knee replacement over a period of nine years. Regular post-operative clinical follow-up was performed using the Knee Society score. The mean pre-operative score was 96, improving to 182 and 180 at five and ten years, respectively. To date, there have been seven (0.5%) cases which required revision, primarily for septic loosening (four cases), with low rates of other post-operative complications. The cumulative survival at ten years with revision as the end-point, was 99.14% (95% confidence interval 92.5 to 99.8). These results support the use of hydroxyapatite in a cementless total knee replacement since it can give reliable fixation with an excellent clinical and functional outcome.
The role of modular tibial implants in total knee replacement is not fully defined. We performed a prospective randomised controlled clinical trial using radiostereophotogrammetric analysis to compare the performance of an all-polyethylene tibia with a metal-backed cruciate-retaining condylar design, PFC-∑ total knee replacement for up to 24 months. There were 51 patients who were randomised into two treatment groups. There were 10 subsequent withdrawals, leaving 21 all-polyethylene and 20 metal-backed tibial implants. No patient was lost to follow-up. There were no significant demographic differences between the groups. At two years one metal-backed implant showed migration >
1 mm, but no polyethylene implant reached this level. There was a significant increase in the SF-12 and Oxford knee scores after operation in both groups. In an uncomplicated primary total knee replacement the all-polyethylene PFC-∑ tibial prosthesis showed no statistical difference in migration from that of the metal-backed counterpart. There was no difference in the clinical results as assessed by the SF-12, the Oxford knee score, alignment or range of movement at 24 months, although these assessment measures were not statistically powered in this study.