Robotic-assisted total knee arthroplasty (TKA) has proven higher accuracy, fewer alignment outliers, and improved short-term clinical outcomes when compared to conventional TKA. However, evidence of cost-effectiveness and individual superiority of one system over another is the subject of further research. Despite its growing adoption rate, published results are still limited and comparative studies are scarce. This review compares characteristics and performance of five currently available systems, focusing on the information and feedback each system provides to the surgeon, what the systems allow the surgeon to modify during the operation, and how each system then aids execution of the surgical plan. Cite this article: Abstract
The development of spinal deformity in children with underlying neurodisability can affect their ability to function and impact on their quality of life, as well as compromise provision of nursing care. Patients with neuromuscular spinal deformity are among the most challenging due to the number and complexity of medical comorbidities that increase the risk for severe intraoperative or postoperative complications. A multidisciplinary approach is mandatory at every stage to ensure that all nonoperative measures have been applied, and that the treatment goals have been clearly defined and agreed with the family. This will involve input from multiple specialities, including allied healthcare professionals, such as physiotherapists and wheelchair services. Surgery should be considered when there is significant impact on the patients’ quality of life, which is usually due to poor sitting balance, back or costo-pelvic pain, respiratory complications, or problems with self-care and feeding. Meticulous preoperative assessment is required, along with careful consideration of the nature of the deformity and the problems that it is causing. Surgery can achieve good curve correction and results in high levels of satisfaction from the patients and their caregivers. Modern modular posterior instrumentation systems allow an effective deformity correction. However, the risks of surgery remain high, and involvement of the family at all stages of decision-making is required in order to balance the risks and anticipated gains of the procedure, and to select those patients who can mostly benefit from spinal correction.
Dislocation following total hip arthroplasty (THA) is a well-known and potentially devastating complication. Clinicians have used many strategies in attempts to prevent dislocation since the introduction of THA. While the importance of postoperative care cannot be ignored, particular emphasis has been placed on preoperative planning in the prevention of dislocation. The strategies have progressed from more traditional approaches, including modular implants, the size of the femoral head, and augmentation of the offset, to newer concepts, including patient-specific component positioning combined with computer navigation, robotics, and the use of dual-mobility implants. As clinicians continue to pursue improved outcomes and reduced complications, these concepts will lay the foundation for future innovation in THA and ultimately improved outcomes. Cite this article:
Continuous technical improvement in spinal surgical procedures, with the aim of enhancing patient outcomes, can be assisted by the deployment of advanced technologies including navigation, intraoperative CT imaging, and surgical robots. The latest generation of robotic surgical systems allows the simultaneous application of a range of digital features that provide the surgeon with an improved view of the surgical field, often through a narrow portal. There is emerging evidence that procedure-related complications and intraoperative blood loss can be reduced if the new technologies are used by appropriately trained surgeons. Acceptance of the role of surgical robots has increased in recent years among a number of surgical specialities including general surgery, neurosurgery, and orthopaedic surgeons performing major joint arthroplasty. However, ethical challenges have emerged with the rollout of these innovations, such as ensuring surgeon competence in the use of surgical robotics and avoiding financial conflicts of interest. Therefore, it is essential that trainees aspiring to become spinal surgeons as well as established spinal specialists should develop the necessary skills to use robotic technology safely and effectively and understand the ethical framework within which the technology is introduced. Traditional and more recently developed platforms exist to aid skill acquisition and surgical training which are described. The aim of this narrative review is to describe the role of surgical robotics in spinal surgery, describe measures of proficiency, and present the range of training platforms that institutions can use to ensure they employ confident spine surgeons adequately prepared for the era of robotic spinal surgery. Cite this article:
The diagnosis of periprosthetic joint infection can be difficult
due to the high rate of culture-negative infections. The aim of
this study was to assess the use of next-generation sequencing for
detecting organisms in synovial fluid. In this prospective, single-blinded study, 86 anonymized samples
of synovial fluid were obtained from patients undergoing aspiration
of the hip or knee as part of the investigation of a periprosthetic
infection. A panel of synovial fluid tests, including levels of
C-reactive protein, human neutrophil elastase, total neutrophil
count, alpha-defensin, and culture were performed prior to next-generation
sequencing.Aims
Materials and Methods
Periprosthetic joint infection (PJI) is one of
the most feared and challenging complications following total knee arthroplasty.
We provide a detailed description of our current understanding regarding
the management of PJI of the knee, including diagnostic aids,
pre-operative planning, surgical treatment, and outcome. Cite this article:
Previous standards for assessing the reliability
of a measurement tool have lacked consistency. We reviewed the most
current American Society for Testing and Materials and International
Organisation for Standardisation (ISO) recommendations, and propose
an algorithm for orthopaedic surgeons. When assessing a measurement
tool, conditions of the experimental set-up and clear formulae used
to compile the results should be strictly reported. According to
these recent guidelines, accuracy is a confusing word with an overly
broad meaning and should therefore be abandoned. Depending on the
experimental conditions, one should be referring to bias (when the study
protocol involves accepted reference values), and repeatability
(sr, r) or reproducibility (SR, R). In the absence of accepted reference
values, only repeatability (sr, r) or reproducibility (SR, R) should
be provided. Take home message: Assessing the reliability of a measurement
tool involves reporting bias, repeatability and/or reproducibility
depending on the defined conditions, instead of precision or accuracy. Cite this article:
Primary total knee arthroplasty (TKA) is a reliable
procedure with reproducible long-term results. Nevertheless, there
are conditions related to the type of patient or local conditions
of the knee that can make it a difficult procedure. The most common
scenarios that make it difficult are discussed in this review. These
include patients with many previous operations and incisions, and
those with severe coronal deformities, genu recurvatum, a stiff knee,
extra-articular deformities and those who have previously undergone
osteotomy around the knee and those with chronic dislocation of
the patella. Each condition is analysed according to the characteristics of
the patient, the pre-operative planning and the reported outcomes. When approaching the difficult primary TKA surgeons should use
a systematic approach, which begins with the review of the existing
literature for each specific clinical situation. Cite this article:
The surgical community is plagued with a reputation
for both failing to engage and to deliver on clinical research.
This is in part due to the absence of a strong research culture, however
it is also due to a multitude of barriers encountered in clinical
research; particularly those involving surgical interventions. ‘Trauma’
amplifies these barriers, owing to the unplanned nature of care,
unpredictable work patterns, the emergent nature of treatment and
complexities in the consent process. This review discusses the barriers
to clinical research in surgery, with a particular emphasis on trauma.
It considers how barriers may be overcome, with the aim to facilitate
future successful clinical research. Cite this article: