Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 2 | Pages 170 - 175
1 Feb 2018
Lam Tin Cheung K Lanting BA McCalden RW Yuan X MacDonald SJ Naudie DD Teeter MG

Aims

The aim of this study was to evaluate the long-term inducible displacement of cemented tibial components ten years after total knee arthroplasty (TKA).

Patients and Methods

A total of 15 patients from a previously reported prospective trial of fixation using radiostereometric analysis (RSA) were examined at a mean of 11 years (10 to 11) postoperatively. Longitudinal supine RSA examinations were acquired at one week, one year, and two years postoperatively and at final follow-up. Weight-bearing RSA examinations were also undertaken with the operated lower limb in neutral and in maximum internal rotation positions. Maximum total point motion (MTPM) was calculated for the longitudinal and inducible displacement examinations (supine versus standing, standing versus internal rotation, and supine versus standing with internal rotation).


The Bone & Joint Journal
Vol. 101-B, Issue 7_Supple_C | Pages 55 - 60
1 Jul 2019
Laende EK Richardson CG Dunbar MJ

Aims. Early implant migration measured with radiostereometric analysis (RSA) has been proposed as a useful predictor of long-term fixation of tibial components in total knee arthroplasty. Evaluation of actual long-term fixation is of interest for cemented components, as well as for cementless fixation, which may offer long-term advantages once osseointegration has occurred. The objective of this study was to compare the long-term migration with one- and two-year migration to evaluate the predictive ability of short-term migration data and to compare migration and inducible displacement between cemented and cementless (porous metal monoblock) components at least ten years postoperatively. Patients and Methods. Patients who had participated in RSA migration studies with two-year follow-up were recruited to return for a long-term follow-up, at least ten years from surgery. Two cemented tibial designs from two manufacturers and one porous metal monoblock cementless tibial design were studied. At the long-term follow-up, patients had supine RSA examinations to determine migration and loaded examinations (single leg stance) to determine inducible displacement. In total, 79 patients (54 female) returned, with mean time since surgery of 12 years (10 to 14). There were 58 cemented and 21 cementless tibial components. Results. Migration at one year and two years was significantly correlated with long-term migration (p < 0.001). Median migration at the long-term follow-up was 0.6 mm (maximum total point motion; interquartile range (IQR) 0.4 to 0.9) for the cemented group and 0.6 mm. (IQR 0.3 to 1.1) for the cementless group with no difference between groups (p = 0.99). Inducible displacement was significantly lower for the cementless components (p < 0.001). Conclusion. Long-term migration was strongly correlated with two-year migration. Although long-term migration was not different for cemented or cementless tibial components, inducible displacement at the long-term visit was significantly lower for these cementless components, suggesting superior fixation. These findings support the predictive value of short-term migration in determining long-term fixation. Cite this article: Bone Joint J 2019;101-B(7 Supple C):55–60


Bone & Joint Open
Vol. 5, Issue 1 | Pages 20 - 27
17 Jan 2024
Turgeon TR Vasarhelyi E Howard J Teeter M Righolt CH Gascoyne T Bohm E

Aims. A novel enhanced cement fixation (EF) tibial implant with deeper cement pockets and a more roughened bonding surface was released to market for an existing total knee arthroplasty (TKA) system.This randomized controlled trial assessed fixation of the both the EF (ATTUNE S+) and standard (Std; ATTUNE S) using radiostereometric analysis. Methods. Overall, 50 subjects were randomized (21 EF-TKA and 23 Std-TKA in the final analysis), and had follow-up visits at six weeks, and six, 12, and 24 months to assess migration of the tibial component. Low viscosity bone cement with tobramycin was used in a standardized fashion for all subjects. Patient-reported outcome measure data was captured at preoperative and all postoperative visits. Results. The patient cohort mean age was 66 years (SD seven years), 59% were female, and the mean BMI was 32 kg/m. 2. (SD 6 kg/m. 2. ). Mean two-year subsidence of the EF-TKA was 0.056 mm (95% confidence interval (CI) 0.025 to 0.086) versus 0.006 mm (95% CI -0.029 to 0.040) for the Std-TKA, and the two-year maximum total point motion (MTPM) was 0.285 mm (95% upper confidence limit (UCL) ≤ 0.363) versus 0.346 mm (95% UCL ≤ 0.432), respectively, for a mean difference of -0.061 mm (95% CI -0.196 to 0.074). Inducible displacement also did not differ between groups. The MTPMs between 12 and 24 months for each group was below the published threshold of 0.2 mm for predicting early aseptic loosening (p < 0.001 and p = 0.001, respectively). Conclusion. Both the enhanced fixation and the standard tibial implant design showed fixation with a predicted low risk of long-term aseptic loosening. Cite this article: Bone Jt Open 2024;5(1):20–27


Bone & Joint Open
Vol. 2, Issue 1 | Pages 48 - 57
19 Jan 2021
Asokan A Plastow R Kayani B Radhakrishnan GT Magan AA Haddad FS

Cementless knee arthroplasty has seen a recent resurgence in popularity due to conceptual advantages, including improved osseointegration providing biological fixation, increased surgical efficiency, and reduced systemic complications associated with cement impaction and wear from cement debris. Increasingly younger and higher demand patients are requiring knee arthroplasty, and as such, there is optimism cementless fixation may improve implant survivorship and functional outcomes.

Compared to cemented implants, the National Joint Registry (NJR) currently reports higher revision rates in cementless total knee arthroplasty (TKA), but lower in unicompartmental knee arthroplasty (UKA). However, recent studies are beginning to show excellent outcomes with cementless implants, particularly with UKA which has shown superior performance to cemented varieties. Cementless TKA has yet to show long-term benefit, and currently performs equivalently to cemented in short- to medium-term cohort studies. However, with novel concepts including 3D-printed coatings, robotic-assisted surgery, radiostereometric analysis, and kinematic or functional knee alignment principles, it is hoped they may help improve the outcomes of cementless TKA in the long-term. In addition, though cementless implant costs remain higher due to novel implant coatings, it is speculated cost-effectiveness can be achieved through greater surgical efficiency and potential reduction in revision costs. There is paucity of level one data on long-term outcomes between fixation methods and the cost-effectiveness of modern cementless knee arthroplasty.

This review explores recent literature on cementless knee arthroplasty, with regards to clinical outcomes, implant survivorship, complications, and cost-effectiveness; providing a concise update to assist clinicians on implant choice.

Cite this article: Bone Jt Open 2021;2(1):48–57.


Aims

Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement.

Patients and Methods

A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (sd 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (sd 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 6 | Pages 817 - 823
1 Jun 2011
Solomon LB Callary SA Stevenson AW McGee MA Chehade MJ Howie DW

We investigated the stability of seven Schatzker type II fractures of the lateral tibial plateau treated by subchondral screws and a buttress plate followed by immediate partial weight-bearing. In order to assess the stability of the fracture, weight-bearing inducible displacements of the fracture fragments and their migration over a one-year period were measured by differentially loaded radiostereometric analysis and standard radiostereometric analysis, respectively. The mean inducible craniocaudal fracture fragment displacements measured −0.30 mm (−0.73 to 0.02) at two weeks and 0.00 mm (−0.12 to 0.15) at 52 weeks. All inducible displacements were elastic in nature under all loads at each examination during follow-up. At one year, the mean craniocaudal migration of the fracture fragments was −0.34 mm (−1.64 to 1.51).

Using radiostereometric methods, this case series has shown that in the Schatzker type II fractures investigated, internal fixation with subchondral screws and a buttress plate provided adequate stability to allow immediate post-operative partial weight-bearing, without harmful consequences.