Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery. Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.Aims
Methods
We investigated whether strontium-enriched calcium
phosphate cement (Sr-CPC)-treated soft-tissue tendon graft results
in accelerated healing within the bone tunnel in reconstruction
of the anterior cruciate ligament (ACL). A total of 30 single-bundle
ACL reconstructions using tendo Achillis allograft were performed
in 15 rabbits. The graft on the tested limb was treated with Sr-CPC,
whereas that on the contralateral limb was untreated and served
as a control. At timepoints three, six, nine, 12 and 24 weeks after
surgery, three animals were killed for histological examination.
At six weeks, the graft–bone interface in the control group was
filled in with fibrovascular tissue. However, the gap in the Sr-CPC
group had already been completely filled in with new bone, and there
was evidence of the early formation of Sharpey fibres. At 24 weeks,
remodelling into a normal ACL–bone-like insertion was found in the
Sr-CPC group. Coating of Sr-CPC on soft tissue tendon allograft
leads to accelerated
Structural allografts may be used to manage uncontained
bone defects in revision total knee replacement (TKR). However,
the availability of cadaver grafts is limited in some areas of Asia.
The aim of this study was to evaluate the mid-term outcome of the
use of femoral head allografts for the reconstruction of uncontained
defects in revision TKR, focusing on complications related to the
graft. We retrospectively reviewed 28 patients (30 TKRs) with Anderson
Orthopaedic Research Institute (AORI) type 3 bone defects, who underwent
revision using femoral head allografts and stemmed components. The
mean number of femoral heads used was 1.7 (1 to 3). The allograft–host
junctions were packed with cancellous autograft. At a mean follow-up of 76 months (38 to 136) the mean American
Knee Society knee score improved from 37.2 (17 to 60) pre-operatively
to 90 (83 to 100) (p <
0.001). The mean function score improved
from 26.5 (0 to 50) pre-operatively to 81 (60 to 100) (p <
0.001).
All the
We used immediate post-operative in vivo three-dimensional
computed tomography to compare graft bending angles and femoral
tunnel lengths in 155 patients who had undergone single-bundle reconstruction
of the anterior cruciate ligament using the transtibial (n = 37),
anteromedial portal (n = 72) and outside-in (n = 46) techniques. The bending angles in the sagittal and axial planes were significantly
greater but the coronal-bending angle was significantly less in
the transtibial group than in the anteromedial portal and outside-in
groups (p <
0.001 each). The mean length of the femoral tunnel
in all three planes was significantly greater in the transtibial
group than the anteromedial portal and outside-in groups (p <
0.001 each), but all mean tunnel lengths in the three groups exceeded
30 mm. The only significant difference was the coronal graft- bending
angle in the anteromedial portal and outside-in groups (23.5° vs 29.8°,
p = 0.012). Compared with the transtibial technique, the anteromedial portal
and outside-in techniques may reduce the graft-bending stress at
the opening of the femoral tunnel. Despite the femoral tunnel length
being shorter in the anteromedial portal and outside-in techniques
than in the transtibial technique, a femoral tunnel length of more than
30 mm in the anteromedial portal and outside-in techniques may be
sufficient for the
Proliferation, migration, and differentiation of anterior cruciate ligament (ACL) remnant and surrounding cells are fundamental processes for ACL reconstruction; however, the interaction between ACL remnant and surrounding cells is unclear. We hypothesized that ACL remnant cells preserve the capability to regulate the surrounding cells’ activity, collagen gene expression, and tenogenic differentiation. Moreover, extracorporeal shock wave (ESW) would not only promote activity of ACL remnant cells, but also enhance their paracrine regulation of surrounding cells. Cell viability, proliferation, migration, and expression levels of Collagen-I (COL-I) A1, transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF) were compared between ACL remnant cells untreated and treated with ESW (0.15 mJ/mm2, 1,000 impulses, 4 Hz). To evaluate the subsequent effects on the surrounding cells, bone marrow stromal cells (BMSCs)’ viability, proliferation, migration, and levels of Type I Collagen, Type III Collagen, and tenogenic gene (Aims
Methods
Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function. A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).Aims
Materials and Methods
The aim of this study was to report the outcome of femoral condylar fresh osteochondral allografts (FOCA) with concomitant realignment osteotomy with a focus on graft survivorship, complications, reoperation, and function. We identified 60 patients (16 women, 44 men) who underwent unipolar femoral condylar FOCA with concomitant realignment between 1972 and 2012. The mean age of the patients was 28.9 years (10 to 62) and the mean follow-up was 11.4 years (2 to 35). Failure was defined as conversion to total knee arthroplasty, revision allograft, or graft removal. Clinical outcome was evaluated using the modified Hospital for Special Surgery (mHSS) score.Aims
Patients and Methods
The potential harm to the growth plate following reconstruction of the anterior cruciate ligament in skeletally-immature patients is well documented, but we are not aware of literature on the subject of the fate of the graft itself. We have reviewed five adolescent males who underwent reconstruction of the ligament with four-strand hamstring grafts using MR images taken at a mean of 34.6 months (18 to 58) from the time of operation. The changes in dimension of the graft were measured and compared with those taken at the original operation. No growth arrest was seen on radiological or clinical measurement of leg-length discrepancy, nor was there any soft-tissue contracture. All the patients regained their pre-injury level of activity, including elite-level sport in three. The patients grew by a mean of 17.3 cm (14 to 24). The diameter of the grafts did not change despite large increases in length (mean 42%; 33% to 57%). Most of the gain in length was on the femoral side. Large changes in the length of the grafts were seen. There is a considerable increase in the size of the graft, so some neogenesis must occur; the graft must grow.
We have investigated the changes in anterior laxity of the knee in response to direct electrical stimulation of eight normal and 45 reconstructed anterior cruciate ligaments (ACLs). In the latter, the mean time from reconstruction was 26.7 months (24 to 32). The ACL was stimulated electrically using a bipolar electrode probe during arthroscopy. Anterior laxity was examined with the knee flexed at 20° under a force of 134 N applied anteriorly to the tibia using the KT-2000 knee arthrometer before, during and after electrical stimulation. Anterior tibial translation in eight normal and 17 ACL-reconstructed knees was significantly decreased during stimulation, compared with that before stimulation. In 28 knees with reconstruction of the ACL, in 22 of which the grafts were found to have detectable somatosensory evoked potentials during stimulation, anterior tibial translation was not decreased. These findings suggest that the ACL-hamstring reflex arc in normal knees may contribute to the functional stability and that this may not be fully restored after some reconstructions of the ACL.