Aims.
Aims. Treatment for delayed wound healing resulting from peripheral vascular diseases and
Aims. Limb salvage for
Aims. The primary objective was to determine the incidence of COVID-19 infection and 30-day mortality in patients undergoing foot and ankle surgery during the global pandemic. Secondary objectives were to determine if there was a change in infection and complication profile with changes introduced in practice. Methods. This UK-based multicentre retrospective national audit studied foot and ankle patients who underwent surgery between 13 January and 31 July 2020, examining time periods pre-UK national lockdown, during lockdown (23 March to 11 May 2020), and post-lockdown. All adult patients undergoing foot and ankle surgery in an operating theatre during the study period were included. A total of 43 centres in England, Scotland, Wales, and Northern Ireland participated. Variables recorded included demographic data, surgical data, comorbidity data, COVID-19 and mortality rates, complications, and infection rates. Results. A total of 6,644 patients were included. Of the operated patients, 0.52% (n = 35) contracted COVID-19. The overall all-cause 30-day mortality rate was 0.41%, however in patients who contracted COVID-19, the mortality rate was 25.71% (n = 9); this was significantly higher for patients undergoing
Venous thromboembolism (VTE) is a potential complication of foot and ankle surgery. There is a lack of agreement on contributing risk factors and chemical prophylaxis requirements. The primary outcome of this study was to analyze the 90-day incidence of symptomatic VTE and VTE-related mortality in patients undergoing foot and ankle surgery and Achilles tendon (TA) rupture. Secondary aims were to assess the variation in the provision of chemical prophylaxis and risk factors for VTE. This was a multicentre, prospective national collaborative audit with data collection over nine months for all patients undergoing foot and ankle surgery in an operating theatre or TA rupture treatment, within participating UK hospitals. The association between VTE and thromboprophylaxis was assessed with a univariable logistic regression model. A multivariable logistic regression model was used to identify key predictors for the risk of VTE.Aims
Methods
In our unit, we adopt a two-stage surgical reconstruction approach using internal fixation for the management of infected Charcot foot deformity. We evaluate our experience with this functional limb salvage method. We conducted a retrospective analysis of prospectively collected data of all patients with infected Charcot foot deformity who underwent two-stage reconstruction with internal fixation between July 2011 and November 2019, with a minimum of 12 months’ follow-up.Aims
Methods
Surgical reconstruction of deformed Charcot feet carries a high risk of nonunion, metalwork failure, and deformity recurrence. The primary aim of this study was to identify the factors contributing to these complications following hindfoot Charcot reconstructions. We retrospectively analyzed patients who underwent hindfoot Charcot reconstruction with an intramedullary nail between January 2007 and December 2019 in our unit. Patient demographic details, comorbidities, weightbearing status, and postoperative complications were noted. Metalwork breakage, nonunion, deformity recurrence, concurrent midfoot reconstruction, and the measurements related to intramedullary nail were also recorded.Aims
Methods
Neuropathic changes in the foot are common with
a prevalence of approximately 1%. The diagnosis of neuropathic arthropathy
is often delayed in diabetic patients with harmful consequences
including amputation. The appropriate diagnosis and treatment can
avoid an extensive programme of treatment with significant morbidity
for the patient, high costs and delayed surgery. The pathogenesis
of a Charcot foot involves repetitive micro-trauma in a foot with impaired
sensation and neurovascular changes caused by pathological innervation
of the blood vessels. In most cases, changes are due to a combination
of both pathophysiological factors. The Charcot foot is triggered
by a combination of mechanical, vascular and biological factors
which can lead to late diagnosis and incorrect treatment and eventually
to destruction of the foot. This review aims to raise awareness of the diagnosis of the Charcot
foot (diabetic neuropathic osteoarthropathy and the differential
diagnosis, erysipelas, peripheral arterial occlusive disease) and
describe the ways in which the diagnosis may be made. The clinical
diagnostic pathways based on different classifications are presented. Cite this article:
Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy. It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with diabetic neuropathy. This leads to decreased neuropeptides (nitric oxide and calcitonin gene-related peptide), which may affect the normal coupling of bone formation and resorption, and increased levels of Receptor activator of nuclear factor kappa-B ligand, potentiating osteoclastogenesis. Repetitive unrecognized trauma due to neuropathy increases levels of pro-inflammatory cytokines (interleukin-1β, interleukin-6, tumour necrosis factor α) which could also contribute to increased bone resorption, in combination with a pre-inflammatory state, with increased autoimmune reactivity and a profile of monocytes primed to transform into osteoclasts - cluster of differentiation 14 (CD14). Increased blood glucose and loss of circulating Receptor for Advanced Glycation End-Products (AGLEPs), leading to increased non-enzymatic glycation of collagen and accumulation of AGLEPs in the tissues of the foot, may also contribute to the pathological process. An understanding of the relative contributions of each of these mechanisms and a final common pathway for the development of Charcot neuroarthropathy are still lacking.
Limited forefoot amputation in diabetic patients
with osteomyelitis is frequently required. We retrospectively reviewed
diabetic patients with osteomyelitis, an unhealed ulcer and blood
pressure in the toe of >
45 mmHg who underwent limited amputation
of the foot with primary wound closure. Between 2006 and 2012, 74
consecutive patients with a mean age of 67 years (29 to 93), and
a median follow-up of 31 months, were included. All the wounds healed
primarily at a median of 37 days (13 to 210; mean 48). At a median
of 6 months (1.5 to 18; mean 353 days), 23 patients (31%) suffered
a further ulceration. Of these, 12 patients (16% of the total) required
a further amputation. We conclude that primary wound closure following limited amputation
of the foot in patients with diabetes is a safe and effective technique
when associated with appropriate antibiotic treatment. Cite this article:
We report the outcomes of 20 patients (12 men,
8 women, 21 feet) with Charcot neuro-arthropathy who underwent correction
of deformities of the ankle and hindfoot using retrograde intramedullary
nail arthrodesis. The mean age of the patients was 62.6 years (46
to 83); their mean BMI was 32.7 (15 to 47) and their median American
Society of Anaesthetists score was 3 (2 to 4). All presented with
severe deformities and 15 had chronic ulceration. All were treated
with reconstructive surgery and seven underwent simultaneous midfoot
fusion using a bolt, locking plate or a combination of both. At
a mean follow-up of 26 months (8 to 54), limb salvage was achieved
in all patients and 12 patients (80%) with ulceration achieved healing
and all but one patient regained independent mobilisation. There was
failure of fixation with a broken nail requiring revision surgery
in one patient. Migration of distal locking screws occurred only
when standard screws had been used but not with hydroxyapatite-coated
screws. The mean American Academy of Orthopaedic Surgeons Foot and
Ankle (AAOS-FAO) score improved from 50.7 (17 to 88) to 65.2 (22
to 88), (p = 0.015). The mean Short Form (SF)-36 Health Survey Physical
Component Score improved from 25.2 (16.4 to 42.8) to 29.8 (17.7
to 44.2), (p = 0.003) and the mean Euroqol EQ‑5D‑5L score improved
from 0.63 (0.51 to 0.78) to 0.67 (0.57 to 0.84), (p = 0.012). Single-stage correction of deformity using an intramedullary
hindfoot arthrodesis nail is a good form of treatment for patients
with severe Charcot hindfoot deformity, ulceration and instability
provided a multidisciplinary care plan is delivered. Cite this article:
We studied a cohort of 26 diabetic patients with chronic ulceration under the first metatarsal head treated by a modified Jones extensor hallucis longus and a flexor hallucis longus transfer. If the first metatarsal was still plantar flexed following these two transfers, a peroneus longus to the peroneus brevis tendon transfer was also performed. Finally, if ankle dorsiflexion was <
5° with the knee extended, a Strayer-type gastrocnemius recession was performed. The mean duration of chronic ulceration despite a minimum of six months’ conservative care was 16.2 months (6 to 31). A total of 23 of the 26 patients were available for follow-up at a mean of 39.6 months (12 to 61) after surgery. All except one achieved complete ulcer healing at a mean of 4.4 weeks (2 to 8) after surgery, and there was no recurrence of ulceration under the first metatarsal. We believe that tendon balancing using modified Jones extensor hallucis longus and flexor hallucis longus transfers, associated in selected cases with a peroneus longus to brevis transfer and/or Strayer procedure, can promote rapid and sustained healing of chronic diabetic ulcers under the first metatarsal head.