We quantitatively compared the 3D bone density distributions on CT scans performed on scaphoid waist fractures subacutely that went on to union or nonunion, and assessed whether 2D CT evaluations correlate with 3D bone density evaluations. We constructed 3D models from 17 scaphoid waist fracture CTs performed between four to 18 weeks after fracture that did not unite (nonunion group), 17 age-matched scaphoid waist fracture CTs that healed (union group), and 17 age-matched control CTs without injury (control group). We measured the 3D bone density for the distal and proximal fragments relative to the triquetrum bone density and compared findings among the three groups. We then performed bone density measurements using 2D CT and evaluated the correlation with 3D bone densities. We identified the optimal cutoff with diagnostic values of the 2D method to predict nonunion with receiver operating characteristic (ROC) curves.Aims
Methods
Objectives.
Surgeons need to be able to measure angles and distances in three dimensions in the planning and assessment of knee replacement.
Total hip replacement (THR) is a very common
procedure undertaken in up to 285 000 Americans each year. Patient
satisfaction with THR is very high, with improvements in general
health, quality of life, and function while at the same time very
cost effective. Although the majority of patients have a high degree
of satisfaction with their THR, 27% experience some discomfort,
and up to 6% experience severe chronic pain. Although it can be
difficult to diagnose the cause of the pain in these patients, this
clinical issue should be approached systematically and thoroughly.
A detailed history and clinical examination can often provide the
correct diagnosis and guide the appropriate selection of investigations, which
will then serve to confirm the clinical diagnosis made. Cite this article:
This paper investigates whether cortical comminution
and intra-articular involvement can predict displacement in distal
radius fractures by using a classification that includes volar comminution
as a separate parameter. A prospective multicentre study involving non-operative treatment
of distal radius fractures in 387 patients aged between 15 and 74
years (398 fractures) was conducted. The presence of cortical comminution
and intra-articular involvement according to the Buttazzoni classification
is described. Minimally displaced fractures were treated with immobilisation
in a cast while displaced fractures underwent closed reduction with
subsequent immobilisation. Radiographs were obtained after reduction,
at 10 to 14 days and after union. The outcome measure was re-displacement
or union. In fractures with volar comminution (Buttazzoni type 4), 96%
(53 of 55) displaced. In intra-articular fractures without volar
comminution (Buttazzoni 3), 72% (84 of 117) displaced. In extra-articular
fractures with isolated dorsal comminution (Buttazzoni 2), 73% (106
of 145) displaced while in non-comminuted fractures (Buttazzoni
1), 16 % (13 of 81 ) displaced. A total of 32% (53 of 165) of initially minimally displaced fractures
later displaced. All of the initially displaced volarly comminuted
fractures re-displaced. Displacement occurred in 31% (63 of 205)
of fractures that were still in good alignment after 10 to 14 days. Regression analysis showed that volar and dorsal comminution
predicted later displacement, while intra-articular involvement
did not predict displacement. Volar comminution was the strongest
predictor of displacement. Cite this article:
The aim of this pilot study was to evaluate the accuracy of two different methods of navigated retrograde drilling of talar lesions. Artificial osteochondral talar lesions were created in 14 cadaver lower limbs. Two methods of navigated drilling were evaluated by one examiner. Navigated Iso-C3D was used in seven cadavers and 2D fluoroscopy-based navigation in the remaining seven. Of 14 talar lesions, 12 were successfully targeted by navigated drilling. In both cases of inaccurate targeting the 2D fluoroscopy-based navigation was used, missing lesions by 3 mm and 5 mm, respectively. The mean radiation time was increased using Iso-C3D navigation (23 s; 22 to 24) compared with 2D fluoroscopy-based navigation (14 s, 11 to 17).
We released the infraspinatus tendons of six sheep, allowed retraction of the musculotendinous unit over a period of 40 weeks and then performed a repair. We studied retraction of the musculotendinous unit 35 weeks later using CT, MRI and macroscopic dissection. The tendon was retracted by a mean of 4.7 cm (3.8 to 5.1) 40 weeks after release and remained at a mean of 4.2 cm (3.3 to 4.7) 35 weeks after the repair. Retraction of the muscle was only a mean of 2.7 cm (2.0 to 3.3) and 1.7 cm (1.1 to 2.2) respectively at these two points. Thus, the musculotendinous junction had shifted distally by a mean of 2.5 cm (2.0 to 2.8) relative to the tendon. Sheep muscle showed an ability to compensate for approximately 60% of the tendon retraction in a hitherto unknown fashion. Such retraction may not be a quantitatively reliable indicator of retraction of the muscle and may overestimate the need for elongation of the musculotendinous unit during repair.
The appearance of the ‘grand-piano sign’ on the anterior resected surface of the femur has been considered to be a marker for correct femoral rotational alignment during total knee replacement. Our study was undertaken to assess quantitatively the morphological patterns on the resected surface after anterior femoral resection with various angles of external rotation, using a computer-simulation technique. A total of 50 right distal femora with varus osteoarthritis in 50 Korean patients were scanned using computerised tomography. Computer image software was used to simulate the anterior femoral cut, which was applied at an external rotation of 0°, 3° and 6° relative to the posterior condylar axis, and parallel to the surgical and clinical epicondylar axes in each case. The morphological patterns on the resected surface were quantified and classified as the ‘grand-piano sign’, ‘the boot sign’ and the ‘butterfly sign’. The surgeon can use the analogy of these quantified sign patterns to ensure that a correct rotational alignment has been obtained intra-operatively.