Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are common orthopaedic procedures requiring postoperative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI)-based image analysis has the potential to automate this postoperative surveillance. The aim of this study was to prepare a scoping review to investigate how AI is being used in the analysis of radiographs following THA and TKA, and how accurate these tools are. The Embase, MEDLINE, and PubMed libraries were systematically searched to identify relevant articles. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews and Arksey and O’Malley framework were followed. Study quality was assessed using a modified Methodological Index for Non-Randomized Studies tool. AI performance was reported using either the area under the curve (AUC) or accuracy.Aims
Methods
Preoperative nasal All primary total hip arthroplasties (THA) and total knee arthroplasties (TKA) performed from January 2006 to April 2018 were retrospectively reviewed for the incidence of early PJI. Demographic parameters, risk factors for PJI (American Society of Anaesthesiologists classification, body mass index, smoking status, and diabetes mellitus) and implant types were collected. A preoperative screening and eradication protocol for nasal colonization of Aims
Methods
The aim of this study was to give estimates of the incidence of component incompatibility in hip and knee arthroplasty and to test the effect of an online, real-time compatibility check. Intraoperative barcode registration of arthroplasty implants was introduced in Denmark in 2013. We developed a compatibility database and, from May 2017, real-time compatibility checking was implemented and became part of the registration. We defined four classes of component incompatibility: A-I, A-II, B-I, and B-II, depending on an assessment of the level of risk to the patient (A/B), and on whether incompatibility was knowingly accepted (I/II).Aims
Materials and Methods
The aims of this study were to increase the diagnostic accuracy
of the analysis of synovial fluid in the differentiation of prosthetic
joint infection (PJI) by the addition of inexpensive biomarkers
such as the levels of C-reactive protein (CRP), adenosine deaminase
(ADA), alpha-2-macrogloblulin (α2M) and procalcitonin. Between January 2013 and December 2015, synovial fluid and removed
implants were requested from 143 revision total joint arthroplasties.
A total of 55 patients met inclusion criteria of the receipt of
sufficient synovial fluid, tissue samples and removed implants for
analysis. The diagnosis of PJI followed the definition from a recent International
Consensus Meeting to create two groups of patients; septic and aseptic.
Using receiver operating characteristic curves we determined the
cutoff values and diagnostic accuracy for each marker.Aims
Patients and Methods
We investigated whether the indentation of bone
cement spacers used in revision of infected joint arthroplasty with a
MacDonald dissector increased the elution of antibiotic The fluid sampled at 72 hours from the indented discs containing
0.17 g gentamicin (0.88% w/w) contained a mean of 113 mcg/ml (90.12
to 143.5) compared with 44.5 mcg/ml (44.02 to 44.90) in the fluid
sampled from the plain discs (p = 0.012). In discs containing 0.33
g gentamicin (1.75% w/w), the concentration eluted from the indented discs
at 72 hours was a mean of 316 mcg/ml (223 to 421) compared with
a mean of 118 mcg/ml (100 to 140) from the plain discs (p <
0.001). At two weeks, these significant differences persisted. At nine
weeks the indented discs eluted a greater concentration for all
gentamicin doses, but the difference was only significant for the
discs containing 0.17 g (0.88% w/w, p = 0.006). However if the area
under the curve is taken as a measure of the total antibiotic eluted,
the indented discs eluted more gentamicin than the plain discs for
the 0.17 g (0.88% w/w, p = 0.031), the 0.25 g (1.41% w/w, p <
0.001) and the 0.33 g (1.75% w/w, p <
0.001) discs. When preparing antibiotic spacers for use in staged revision
arthroplasty surgery we recommend indenting the spacer with a MacDonald
dissector to increase the elution of antibiotic. Cite this article:
Bone cements produced by different manufacturers vary in their mechanical properties and antibiotic elution characteristics. Small changes in the formulation of a bone cement, which may not be apparent to surgeons, can also affect these properties. The supplier of Palacos bone cement with added gentamicin changed in 2005. We carried out a study to examine the mechanical characteristics and antibiotic elution of Schering-Plough Palacos, Heraeus Palacos and Depuy CMW Smartset bone cements. Both Heraeus Palacos and Smartset bone cements performed significantly better than Schering-Plough Palacos in terms of mechanical characteristics, with and without additional vancomycin (p <
0.001). All cements show a deterioration in flexural strength with increasing addition of vancomycin, albeit staying above ISO minimum levels. Both Heraeus Palacos and Smartset elute significantly more gentamicin cumulatively than Schering-Plough Palacos. Smartset elutes significantly more vancomycin cumulatively than Heraeus Palacos. The improved antibiotic elution characteristics of Smartset and Heraeus Palacos are not associated with a deterioration in mechanical properties. Although marketed as the ‘original’ Palacos, Heraeus Palacos has significantly altered mechanical and antibiotic elution characteristics compared with the most commonly-used previous version.