Aims. Minimally manipulated cells, such as autologous
Post-natal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells migrate, differentiate and incorporate into the nacent endothelium and thereby contribute to physiological and pathological neurovascularisation, has stimulated much interest. Its contribution to neovascularisation of tumours, wound healing and revascularisation associated with ischaemia of skeletal and cardiac muscles is well established. We evaluated the responses of endothelial precursor cells in
Objectives. Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous
Aims. Exosomes derived from
In 79 consecutive patients with unicameral bone cysts we compared the results of aspiration and injection of
Aims. Despite recent advances in arthroscopic rotator cuff repair, re-tear rates remain high. New methods to improve healing rates following rotator cuff repair must be sought. Our primary objective was to determine if adjunctive
Aims. Treatment of chronic osteomyelitis (COM) for young patients remains a challenge. Large bone deficiencies secondary to COM can be treated using induced membrane technique (IMT). However, it is unclear which type of bone graft is optimal. The goal of the study was to determine the clinical effectiveness of
Objectives. To assess the structure and extracellular matrix molecule expression of osteogenic cell sheets created via culture in medium with both dexamethasone (Dex) and ascorbic acid phosphate (AscP) compared either Dex or AscP alone. Methods. Osteogenic cell sheets were prepared by culturing rat bone marrow stromal cells in a minimal essential medium (MEM), MEM with AscP, MEM with Dex, and MEM with Dex and AscP (Dex/AscP). The cell number and messenger (m)RNA expression were assessed in vitro, and the appearance of the cell sheets was observed after mechanical retrieval using a scraper. β-tricalcium phosphate (β-TCP) was then wrapped with the cell sheets from the four different groups and subcutaneously implanted into rats. Results. After mechanical retrieval, the osteogenic cell sheets from the MEM, MEM with AscP, and MEM with Dex groups appeared to be fragmented or incomplete structures. The cell sheets cultured with Dex/AscP remained intact after mechanical retrieval, without any identifiable tears. Culture with Dex/AscP increased the mRNA and protein expression of extracellular matrix proteins and cell number compared with those of the other three groups. More bridging bone formation was observed after transplantation of the β-TCP scaffold wrapped with cell sheets cultured with Dex/AscP, than in the other groups. Conclusions. These results suggest that culture with Dex/AscP improves the mechanical integrity of the osteogenic cell sheets, allowing retrieval of the confluent cells in a single cell sheet structure. This method may be beneficial when applied in cases of difficult tissue reconstruction, such as nonunion, bone defects, and osteonecrosis. Cite this article: M. Akahane, T. Shimizu, T. Kira, T. Onishi, Y. Uchihara, T. Imamura, Y. Tanaka. Culturing
Limited success in regenerating large bone defects has been achieved by bridging them with osteoconductive materials. These substitutes lack the osteogenic and osteoinductive properties of bone autograft. A direct approach would be to stimulate osteogenesis in these biomaterials by the addition of fresh bone-marrow cells (BMC). We therefore created osteoperiosteal gaps 2 cm wide in the ulna of adult rabbits and either bridged them with coral alone (CC), coral supplemented with BMC, or left them empty. Coral was chosen as a scaffold because of its good biocompatibility and resorbability. In osteoperiosteal gaps bridged with coral only, the coral was invaded chiefly by fibrous tissue. It was insufficient to produce union after two months. In defects filled with coral and BMC an increase in osteogenesis was observed and the bone surface area was significantly higher compared with defects filled with coral alone. Bony union occurred in six out of six defects filled with coral and BMC after two months. An increase in the resorption of coral was also observed, suggesting that resorbing cells or their progenitors were present in
Aims. Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury. Methods. A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm. 2. ) were included in this study. UPAL gel was implanted into chondral defects after performing
Bone marrow-derived mesenchymal stem cells obtained from bone marrow aspirate concentrate (BMAC) with platelet-rich plasma (PRP), has been used as an adjuvant to hip decompression. Early results have shown promise for hip preservation in patients with osteonecrosis (ON) of the femoral head. The purpose of the current study is to examine the mid-term outcome of this treatment in patients with precollapse corticosteroid-induced ON of the femoral head. In all, 22 patients (35 hips; 11 males and 11 females) with precollapse corticosteroid-induced ON of the femoral head underwent hip decompression combined with BMAC and PRP. Mean age and BMI were 43 years (SD 12) and 31 kg/m² (SD 6), respectively, at the time of surgery. Survivorship free from femoral head collapse and total hip arthroplasty (THA) and risk factors for progression were evaluated at minimum five-years of clinical follow-up with a mean follow-up of seven years (5 to 8).Aims
Methods
Although success has been achieved with implantation of
In 16 mature New Zealand white rabbits mesenchymal stem cells were aspirated from the
Astragalus polysaccharide (APS) participates in various processes, such as the enhancement of immunity and inhibition of tumours. APS can affect osteoporosis (OP) by regulating the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs). This study was designed to elucidate the mechanism of APS in hBMSC proliferation and osteoblast differentiation. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were performed to determine the expression of microRNA (miR)-760 and ankyrin repeat and FYVE domain containing 1 (ANKFY1) in OP tissues and hBMSCs. Cell viability was measured using the Cell Counting Kit-8 assay. The expression of cyclin D1 and osteogenic marker genes (osteocalcin (OCN), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2)) was evaluated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mineral deposits were detected through Alizarin Red S staining. In addition, Western blotting was performed to detect the ANKFY1 protein levels following the regulation of miR-760. The relationship between miR-760 and ANKFY1 was determined using a luciferase reporter assay.Aims
Methods
Objectives. Mesenchymal stem cells (MSCs) are of growing interest in terms of bone regeneration. Most preclinical trials utilize bone-marrow-derived mesenchymal stem cells (bMSCs), although this is not without isolation and expansion difficulties. The aim of this study was: to compare the characteristics of bMSCs and adipose-derived mesenchymal stem cells (AdMSCs) from juvenile, adult, and ovarectomized (OVX) rats; and to assess the effect of human parathyroid hormone (hPTH) 1-34 on their osteogenic potential and migration to stromal cell-derived factor-1 (SDF-1). Methods. Cells were isolated from the adipose and
Traumatic brachial plexus injury causes severe functional impairment
of the arm. Elbow flexion is often affected. Nerve surgery or tendon
transfers provide the only means to obtain improved elbow flexion.
Unfortunately, the functionality of the arm often remains insufficient.
Stem cell therapy could potentially improve muscle strength and
avoid muscle-tendon transfer. This pilot study assesses the safety
and regenerative potential of autologous bone marrow-derived mononuclear
cell injection in partially denervated biceps. Nine brachial plexus patients with insufficient elbow flexion
(i.e., partial denervation) received intramuscular escalating doses
of autologous bone marrow-derived mononuclear cells, combined with
tendon transfers. Effect parameters included biceps biopsies, motor
unit analysis on needle electromyography and computerised muscle tomography,
before and after cell therapy.Objectives
Methods
For the treatment of ununited fractures, we developed
a system of delivering magnetic labelled mesenchymal stromal cells
(MSCs) using an extracorporeal magnetic device. In this study, we
transplanted ferucarbotran-labelled and luciferase-positive bone
marrow-derived MSCs into a non-healing femoral fracture rat model
in the presence of a magnetic field. The biological fate of the
transplanted MSCs was observed using luciferase-based bioluminescence
imaging and we found that the number of MSC derived photons increased
from day one to day three and thereafter decreased over time. The
magnetic cell delivery system induced the accumulation of photons at
the fracture site, while also retaining higher photon intensity
from day three to week four. Furthermore, radiological and histological
findings suggested improved callus formation and endochondral ossification.
We therefore believe that this delivery system may be a promising
option for bone regeneration.