Aims. Limb-lengthening nails have largely replaced external fixation in limb-lengthening and reconstructive surgery. However, the adverse events and high prevalence of radiological changes recently noted with the STRYDE lengthening nail have raised concerns about the use of internal lengthening nails. The aim of this study was to compare the prevalence of radiological
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
The preventive effects of bisphosphonates on articular cartilage in non-arthritic joints are unclear. This study aimed to investigate the effects of oral bisphosphonates on the rate of joint space narrowing in the non-arthritic hip. We retrospectively reviewed standing whole-leg radiographs from patients who underwent knee arthroplasties from 2012 to 2020 at our institute. Patients with previous hip surgery, Kellgren–Lawrence grade ≥ II hip osteoarthritis, hip dysplasia, or rheumatoid arthritis were excluded. The rate of hip joint space narrowing was measured in 398 patients (796 hips), and the effects of the use of bisphosphonates were examined using the multivariate regression model and the propensity score matching (1:2) model.Aims
Methods
Osteoarthritis (OA) is a highly prevalent degenerative joint disorder characterized by joint pain and physical disability. Aberrant subchondral bone induces pathological changes and is a major source of pain in OA. In the subchondral bone, which is highly innervated, nerves have dual roles in pain sensation and bone homeostasis regulation. The interaction between peripheral nerves and target cells in the subchondral bone, and the interplay between the sensory and sympathetic nervous systems, allow peripheral nerves to regulate subchondral bone homeostasis. Alterations in peripheral innervation and local transmitters are closely related to changes in nociception and subchondral bone homeostasis, and affect the progression of OA. Recent literature has substantially expanded our understanding of the physiological and pathological distribution and function of specific subtypes of neurones in bone. This review summarizes the types and distribution of nerves detected in the tibial subchondral bone, their cellular and molecular interactions with bone cells that regulate subchondral bone homeostasis, and their role in OA pain. A comprehensive understanding and further investigation of the functions of peripheral innervation in the subchondral bone will help to develop novel therapeutic approaches to effectively prevent OA, and alleviate OA pain. Cite this article:
To investigate whether idiopathic osteonecrosis of the femoral head (ONFH) is related to impaired osteoblast activities. We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head and the intertrochanteric region of patients with idiopathic ONFH, or from the intertrochanteric region of patients with osteoarthritis (OA), and compared their viability, mineralization capacity, and secretion of paracrine factors.Aims
Methods
1. In congenital absence of the fibula, the fibrous strip that replaces the
1. LeÌri's pleonosteosis is characterised by broadening and deformity of the thumbs and great toes, flexion contracture of the interphalangeal joints, limited movement of other joints, and often a Mongoloid facies. Four such cases are described. 2. A review of the twenty reports in the literature, and the cases now described, shows that the deformities are due to capsular contracture rather than deformity of bone. 3. In one patient there was striking evidence of fibro-cartilaginous thickening of the anterior carpal ligaments. It is suggested that the primary pathological change in pleonosteosis may be in the joint capsules rather than in the epiphyses. 4. The patient with thickening of the anterior carpal ligaments had bilateral median palsy from carpal tunnel compression. 5. The causes of carpal tunnel compression of the median nerve are reviewed. Acute compression may be due not only to dislocation of the semilunar bone but to haemorrhage in the palm. Late compression by bone may occur twenty to fifty years after injury. Late compression without
Little is known about tissue changes underlying bone marrow lesions (BMLs) in non-weight-bearing joints with osteoarthritis (OA). Our aim was to characterize BMLs in OA of the hand using dynamic histomorphometry. We therefore quantified bone turnover and angiogenesis in subchondral bone at the base of the thumb, and compared the findings with control bone from hip OA. Patients with OA at the base of the thumb, or the hip, underwent preoperative MRI to assess BMLs, and tetracycline labelling to determine bone turnover. Three groups were compared: trapezium bones removed by trapeziectomy from patients with thumb base OA (n = 20); femoral heads with (n = 24); and those without (n = 9) BMLs obtained from patients with hip OA who underwent total hip arthroplasty.Objectives
Methods
When large daily doses of vitamin D were administered to rats endochondral growth was inhibited and bone resorption occurred; later in the process uncalcified matrix (osteoid) like that seen in rickets formed on trabecular margins. When vitamin D was given only for a short period and then discontinued, little resorption of bone was seen during the withdrawal period and wide seams of osteoid material appeared which eventually calcified in an irregular manner. When normal endochondral growth was resumed a wide transverse band of dense bone with enclosed cartilaginous cores was left in the marrow cavity. If, after a few days, a second large dose of the vitamin was given resorption again occurred and calcification of osteoid material was accelerated, the first microscopic sign being a dense, wide, granular, deeply staining line at the junction of the bone and new osteoid. After a second withdrawal period a second layer of osteoid formed; eventually another transverse band appeared in the metaphysis. If this hypervitaminosis D cycle (+4 -12) was continued rats continued to form new bone with relatively little remodelling, so that after three such cycles bones became dense and hard. Histological study showed that little marrow cavity remained in either skull, vertebrae or epiphyses and a dense mass of bone enclosing cartilage cores filled the metaphysial part of the long bones. In addition, ankylosis ofteeth, calcification of spinal ligaments and widespread metastatic calcification were present. When hypervitaminosis D cycles (+1 -12, +1 -21) were adjusted to produce minimal resorptive changes a wide range of bone change was observed. This varied from uniform dense metaphysial
An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans.Objectives
Materials and Methods
There are many guidelines that help direct the management of
patients with metal-on-metal (MOM) hip arthroplasties. We have undertaken
a study to compare the management of patients with MOM hip arthroplasties in
different countries. Six international tertiary referral orthopaedic centres were
invited to participate by organising a multi-disciplinary team (MDT)
meeting, consisting of two or more revision hip arthroplasty surgeons
and a musculoskeletal radiologist. A full clinical dataset including
history, blood tests and imaging for ten patients was sent to each
unit, for discussion and treatment planning. Differences in the
interpretation of findings, management decisions and rationale for
decisions were compared using quantitative and qualitative methods.Aims
Methods
There is an increased risk of fracture following
osteoplasty of the femoral neck for cam-type femoroacetabular impingement
(FAI). Resection of up to 30% of the anterolateral head–neck junction
has previously been considered to be safe, however, iatrogenic fractures
have been reported with resections within these limits. We re-evaluated
the amount of safe resection at the anterolateral femoral head–neck
junction using a biomechanically consistent model. In total, 28 composite bones were studied in four groups: control,
10% resection, 20% resection and 30% resection. An axial load was
applied to the adducted and flexed femur. Peak load, deflection
at time of fracture and energy to fracture were assessed using comparison
groups. There was a marked difference in the mean peak load to fracture
between the control group and the 10% resection group (p <
0.001).
The control group also tolerated significantly more deflection before
failure (p <
0.04). The mean peak load (p = 0.172), deflection
(p = 0.547), and energy to fracture (p = 0.306) did not differ significantly between
the 10%, 20%, and 30% resection groups. Any resection of the anterolateral quadrant of the femoral head–neck
junction for FAI significantly reduces the load-bearing capacity
of the proximal femur. After initial resection of cortical bone,
there is no further relevant loss of stability regardless of the
amount of trabecular bone resected. Based on our findings we recommend any patients who undergo anterolateral
femoral head–neck junction osteoplasty should be advised to modify
their post-operative routine until cortical remodelling occurs to
minimise the subsequent fracture risk. Cite this article:
Follow-up radiographs are usually used as the
reference standard for the diagnosis of suspected scaphoid fractures. However,
these are prone to errors in interpretation. We performed a meta-analysis
of 30 clinical studies on the diagnosis of suspected scaphoid fractures,
in which agreement data between any of follow-up radiographs, bone scintigraphy,
magnetic resonance (MR) imaging, or CT could be obtained, and combined
this with latent class analysis to infer the accuracy of these tests
on the diagnosis of suspected scaphoid fractures in the absence
of an established standard. The estimated sensitivity and specificity
were respectively 91.1% and 99.8% for follow-up radiographs, 97.8%
and 93.5% for bone scintigraphy, 97.7% and 99.8% for MRI, and 85.2%
and 99.5% for CT. The results were generally robust in multiple
sensitivity analyses. There was large between-study heterogeneity
for the sensitivity of follow-up radiographs and CT, and imprecision
about their sensitivity estimates. If we acknowledge the lack of a reference standard for diagnosing
suspected scaphoid fractures, MRI is the most accurate test; follow-up
radiographs and CT may be less sensitive, and bone scintigraphy
less specific.
Improvements in the surgical technique of total
knee replacement (TKR) are continually being sought. There has recently
been interest in three-dimensional (3D) pre-operative planning using
magnetic resonance imaging (MRI) and CT. The 3D images are increasingly
used for the production of patient-specific models, surgical guides
and custom-made implants for TKR. The users of patient-specific instrumentation (PSI) claim that
they allow the optimum balance of technology and conventional surgery
by reducing the complexity of conventional alignment and sizing
tools. In this way the advantages of accuracy and precision claimed
by computer navigation techniques are achieved without the disadvantages
of additional intra-operative inventory, new skills or surgical
time. This review describes the terminology used in this area and debates
the advantages and disadvantages of PSI.
We report the findings of an independent review
of 230 consecutive Birmingham hip resurfacings (BHRs) in 213 patients
(230 hips) at a mean follow-up of 10.4 years (9.6 to 11.7). A total
of 11 hips underwent revision; six patients (six hips) died from
unrelated causes; and 13 patients (16 hips) were lost to follow-up.
The survival rate for the whole cohort was 94.5% (95% confidence
interval (CI) 90.1 to 96.9). The survival rate in women was 89.1%
(95% CI 79.2 to 94.4) and in men was 97.5% (95% CI 92.4 to 99.2).
Women were 1.4 times more likely to suffer failure than men. For
each millimetre increase in component size there was a 19% lower
chance of a failure. The mean Oxford hip score was 45.0 (median
47.0, 28 to 48); mean University of California, Los Angeles activity
score was 7.4 (median 8.0, 3 to 9); mean patient satisfaction score
was 1.4 (median 1.0, 0 to 9). A total of eight hips had lysis in
the femoral neck and two hips had acetabular lysis. One hip had
progressive radiological changes around the peg of the femoral component.
There was no evidence of progressive neck narrowing between five
and ten years. Our results confirm that BHR provides good functional outcome
and durability for men, at a mean follow-up of ten years. We are
now reluctant to undertake hip resurfacing in women with this implant.
In our study, the aims were to describe the changes in the appearance of the lumbar spine on MRI in elite fast bowlers during a follow-up period of one year, and to determine whether these could be used to predict the presence of a stress fracture of the posterior elements. We recruited 28 elite fast bowlers with a mean age of 19 years (16 to 24) who were training and playing competitively at the start of the study. They underwent baseline MRI (season 1) and further scanning (season 2) after one year to assess the appearance of the lumbar intervertebral discs and posterior bony elements. The incidence of low back pain and the amount of playing and training time lost were also recorded. In total, 15 of the 28 participants (53.6%) showed signs of acute bone stress on either the season 1 or season 2 MR scans and there was a strong correlation between these findings and the later development of a stress fracture (p <
0.001). The prevalence of intervertebral disc degeneration was relatively low. There was no relationship between disc degeneration on the season 1 MR scans and subsequent stress fracture. Regular lumbar MR scans of asymptomatic elite fast bowlers may be of value in detecting early changes of bone stress and may allow prompt intervention aimed at preventing a stress fracture and avoiding prolonged absence from cricket.