Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 911 - 914
1 Aug 2022
Prijs J Liao Z Ashkani-Esfahani S Olczak J Gordon M Jayakumar P Jutte PC Jaarsma RL IJpma FFA Doornberg JN

Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’). Cite this article: Bone Joint J 2022;104-B(8):911–914


Bone & Joint Open
Vol. 3, Issue 1 | Pages 93 - 97
10 Jan 2022
Kunze KN Orr M Krebs V Bhandari M Piuzzi NS

Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1476 - 1478
1 Dec 2019
Bayliss L Jones LD

This annotation briefly reviews the history of artificial intelligence and machine learning in health care and orthopaedics, and considers the role it will have in the future, particularly with reference to statistical analyses involving large datasets. Cite this article: Bone Joint J 2019;101-B:1476–1478


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article: Bone Joint J 2024;106-B(11):1206–1215


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1754 - 1758
1 Dec 2021
Farrow L Zhong M Ashcroft GP Anderson L Meek RMD

There is increasing popularity in the use of artificial intelligence and machine-learning techniques to provide diagnostic and prognostic models for various aspects of Trauma & Orthopaedic surgery. However, correct interpretation of these models is difficult for those without specific knowledge of computing or health data science methodology. Lack of current reporting standards leads to the potential for significant heterogeneity in the design and quality of published studies. We provide an overview of machine-learning techniques for the lay individual, including key terminology and best practice reporting guidelines. Cite this article: Bone Joint J 2021;103-B(12):1754–1758


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 221 - 226
1 Mar 2023
Wilton T Skinner JA Haddad FS

Recent publications have drawn attention to the fact that some brands of joint replacement may contain variants which perform significantly worse (or better) than their ‘siblings’. As a result, the National Joint Registry has performed much more detailed analysis on the larger families of knee arthroplasties in order to identify exactly where these differences may be present and may hitherto have remained hidden. The analysis of the Nexgen knee arthroplasty brand identified that some posterior-stabilized combinations have particularly high revision rates for aseptic loosening of the tibia, and consequently a medical device recall has been issued for the Nexgen ‘option’ tibial component which was implicated. More elaborate signal detection is required in order to identify such variation in results in a routine fashion if patients are to be protected from such variation in outcomes between closely related implant types.

Cite this article: Bone Joint J 2023;105-B(3):221–226.


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 361 - 364
15 Mar 2023
Vallier HA

Benefits of early stabilization of femoral shaft fractures, in mitigation of pulmonary and other complications, have been recognized over the past decades. Investigation into the appropriate level of resuscitation, and other measures of readiness for definitive fixation, versus a damage control strategy have been ongoing. These principles are now being applied to fractures of the thoracolumbar spine, pelvis, and acetabulum. Systems of trauma care are evolving to encompass attention to expeditious and safe management of not only multiply injured patients with these major fractures, but also definitive care for hip and periprosthetic fractures, which pose a similar burden of patient recumbency until stabilized. Future directions regarding refinement of patient resuscitation, assessment, and treatment are anticipated, as is the potential for data sharing and registries in enhancing trauma system functionality.

Cite this article: Bone Joint J 2023;105-B(4):361–364.