Aims. The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the
The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm3 cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate.Aims
Methods
Aims. The aims of this study were to compare the mean duration of antibiotic release and the mean zone of inhibition between vancomycin-loaded porous tantalum cylinders and antibiotic-loaded bone cement at intervals, and to evaluate potential intrinsic
Aims. Tantalum (Ta) trabecular metal components are increasingly used
to reconstruct major bone defects in revision arthroplasty surgery.
It is known that some metals such as silver have antibacterial properties.
Recent reports have raised the question regarding whether Ta components
are protective against infection in revision surgery. This laboratory
study aimed to establish whether Ta has intrinsic antibacterial
properties against planktonic bacteria, or the ability to inhibit
biofilm formation. Materials and Methods. Equal-sized pieces of Ta and titanium (Ti) acetabular components
were sterilised and incubated with a low dose inoculum of either Staphylococcus
(S.) aureus or S. epidermidis for 24 hours.
After serial dilution, colony forming units (cfu) were quantified
on Mueller-Hinton agar plates. In order to establish whether biofilms
formed to a greater extent on one material than the other, these
Ta and Ti pieces were then washed twice, sonicated and washed again
to remove loosely adhered planktonic bacteria. They were then re-incubated
for 24 hours prior to quantifying the number of cfu. All experiments
were performed in triplicate. Results. More than 1x10. 8. cfu/ml were observed in both the Ta
and Ti experiments. After washing and sonication, more than 2x10. 7. cfu/ml
were observed for both Ta and Ti groups. The results were the same
for both S. aureus and S. epidermidis. Conclusion. Compared with Ti controls, Ta did not demonstrate any intrinsic
antibacterial activity or ability to inhibit biofilm formation.
Hence, intrinsic
Objectives. The surface of pure titanium (Ti) shows decreased histocompatibility over time; this phenomenon is known as biological ageing. UV irradiation enables the reversal of biological ageing through photofunctionalisation, a physicochemical alteration of the titanium surface. Ti implants are sterilised by UV irradiation in dental surgery. However, orthopaedic biomaterials are usually composed of the alloy Ti6Al4V, for which the antibacterial effects of UV irradiation are unconfirmed. Here we evaluated the bactericidal and antimicrobial effects of treating Ti and Ti6Al4V with UV irradiation of a lower and briefer dose than previously reported, for applications in implant surgery. Materials and Methods. Ti and Ti6Al4V disks were prepared. To evaluate the bactericidal effect of UV irradiation, Staphylococcus aureus 834 suspension was seeded onto the disks, which were then exposed to UV light for 15 minutes at a dose of 9 J/cm. 2. To evaluate the antimicrobial activity of UV irradiation, bacterial suspensions were seeded onto the disks 0, 0.5, one, six, 24 and 48 hours, and three and seven days after UV irradiation as described above. In both experiments, the bacteria were then harvested, cultured, and the number of colonies were counted. Results. No colonies were observed when UV irradiation was performed after the bacteria were added to the disks. When the bacteria were seeded after UV irradiation, the amount of surviving bacteria on the Ti and Ti6Al4V disks decreased at 0 hours and then gradually increased. However, the antimicrobial activity was maintained for seven days after UV irradiation. Conclusion. Antimicrobial activity was induced for seven days after UV irradiation on both types of disk. Irradiated Ti6Al4V and Ti had similar
Platelet-rich plasma is a new inductive therapy which is being increasingly used for the treatment of the complications of bone healing, such as infection and nonunion. The activator for platelet-rich plasma is a mixture of thrombin and calcium chloride which produces a platelet-rich gel. We analysed the antibacterial effect of platelet-rich gel in vitro by using the platelet-rich plasma samples of 20 volunteers. In vitro laboratory susceptibility to platelet-rich gel was determined by the Kirby-Bauer disc-diffusion method. Baseline antimicrobial activity was assessed by measuring the zones of inhibition on agar plates coated with selected bacterial strains. Zones of inhibition produced by platelet-rich gel ranged between 6 mm and 24 mm (mean 9.83 mm) in diameter. Platelet-rich gel inhibited the growth of Staphylococcus aureus and was also active against Escherichia coli. There was no activity against Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa. Moreover, platelet-rich gel seemed to induce the in vitro growth of Ps. aeruginosa, suggesting that it may cause an exacerbation of infections with this organism. We believe that a combination of the inductive and
Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.Aims
Methods
Hand trauma, consisting of injuries to both the hand and the wrist, are a common injury seen worldwide. The global age-standardized incidence of hand trauma exceeds 179 per 100,000. Hand trauma may require surgical management and therefore result in significant costs to both healthcare systems and society. Surgical site infections (SSIs) are common following all surgical interventions, and within hand surgery the risk of SSI is at least 5%. SSI following hand trauma surgery results in significant costs to healthcare systems with estimations of over £450 per patient. The World Health Organization (WHO) have produced international guidelines to help prevent SSIs. However, it is unclear what variability exists in the adherence to these guidelines within hand trauma. The aim is to assess compliance to the WHO global guidelines in prevention of SSI in hand trauma. This will be an international, multicentre audit comparing antimicrobial practices in hand trauma to the standards outlined by WHO. Through the Reconstructive Surgery Trials Network (RSTN), hand surgeons across the globe will be invited to participate in the study. Consultant surgeons/associate specialists managing hand trauma and members of the multidisciplinary team will be identified at participating sites. Teams will be asked to collect data prospectively on a minimum of 20 consecutive patients. The audit will run for eight months. Data collected will include injury details, initial management, hand trauma team management, operation details, postoperative care, and antimicrobial techniques used throughout. Adherence to WHO global guidelines for SSI will be summarized using descriptive statistics across each criteria.Aims
Methods
The aim of this study was to develop a single-layer hybrid organic-inorganic sol-gel coating that is capable of a controlled antibiotic release for cementless hydroxyapatite (HA)-coated titanium orthopaedic prostheses. Coatings containing gentamicin at a concentration of 1.25% weight/volume (wt/vol), similar to that found in commercially available antibiotic-loaded bone cement, were prepared and tested in the laboratory for: kinetics of antibiotic release; activity against planktonic and biofilm bacterial cultures; biocompatibility with cultured mammalian cells; and physical bonding to the material (n = 3 in all tests). The sol-gel coatings and controls were then tested in vivo in a small animal healing model (four materials tested; n = 6 per material), and applied to the surface of commercially pure HA-coated titanium rods.Aims
Methods
Periprosthetic joint infection (PJI) is one of the most dreaded complications after arthroplasty surgery; thus numerous approaches have been undertaken to equip metal surfaces with antibacterial properties. Due to its antimicrobial effects, silver is a promising coating for metallic surfaces, and several types of silver-coated arthroplasty implants are in clinical use today. However, silver can also exert toxic effects on eukaryotic cells both in the immediate vicinity of the coated implants and systemically. In most clinically-used implants, silver coatings are applied on bulk components that are not in direct contact with bone, such as in partial or total long bone arthroplasties used in tumour or complex revision surgery. These implants differ considerably in the coating method, total silver content, and silver release rates. Safety issues, such as the occurrence of argyria, have been a cause for concern, and the efficacy of silver coatings in terms of preventing PJI is also controversial. The application of silver coatings is uncommon on parts of implants intended for cementless fixation in host bone, but this option might be highly desirable since the modification of implant surfaces in order to improve osteoconductivity can also increase bacterial adhesion. Therefore, an optimal silver content that inhibits bacterial colonization while maintaining osteoconductivity is crucial if silver were to be applied as a coating on parts intended for bone contact. This review summarizes the different methods used to apply silver coatings to arthroplasty components, with a focus on the amount and duration of silver release from the different coatings; the available experience with silver-coated implants that are in clinical use today; and future strategies to balance the effects of silver on bacteria and eukaryotic cells, and to develop silver-coated titanium components suitable for bone ingrowth. Cite this article:
Periprosthetic joint infections (PJIs) are among the most devastating complications after joint arthroplasty. There is limited evidence on the efficacy of different antiseptic solutions on reducing biofilm burden. The purpose of the present study was to test the efficacy of different antiseptic solutions against clinically relevant microorganisms in biofilm. We conducted an in vitro study examining the efficacy of several antiseptic solutions against clinically relevant microorganisms. We tested antiseptic irrigants against nascent (four-hour) and mature (three-day) single-species biofilm created in vitro using a drip-flow reactor model.Aims
Methods
The optimal protocol for antibiotic loading in the articulating cement spacers for the treatment of prosthetic joint infection (PJI) remains controversial. The objective of the present study was to investigate the effectiveness of articulating cement spacers loaded with a new combination of antibiotics. A retrospective cohort study involving 114 PJI cases treated with implantation of an articulating cement spacer between 2005 and 2016 was performed. The treatment outcomes of the conventional protocol (i.e. gentamicin and vancomycin (GV protocol)) were compared with those reported using the sophisticated antibiotic-loading protocol (i.e. vancomycin, meropenem, and amphotericin (VMA protocol)).Objectives
Methods
The optimal protocol for antibiotic loading in the articulating cement spacers for the treatment of prosthetic joint infection (PJI) remains controversial. The objective of the present study was to investigate the effectiveness of articulating cement spacers loaded with a new combination of antibiotics. A retrospective cohort study involving 114 PJI cases treated with implantation of an articulating cement spacer between 2005 and 2016 was performed. The treatment outcomes of the conventional protocol (i.e. gentamicin and vancomycin (GV protocol)) were compared with those reported using the sophisticated antibiotic-loading protocol (i.e. vancomycin, meropenem, and amphotericin (VMA protocol)).Objectives
Methods
Preclinical data showed poly(methyl methacrylate) (PMMA) loaded with microsilver to be effective against a variety of bacteria. The purpose of this study was to assess patient safety of PMMA spacers with microsilver in prosthetic hip infections in a prospective cohort study. A total of 12 patients with prosthetic hip infections were included for a three-stage revision procedure. All patients received either a gentamicin-PMMA spacer (80 g to 160 g PMMA depending on hip joint dimension) with additional loading of 1% (w/w) of microsilver (0.8 g to 1.6 g per spacer) at surgery 1 followed by a gentamicin-PMMA spacer without microsilver at surgery 2 or vice versa. Implantation of the revision prosthesis was carried out at surgery 3.Objectives
Methods
The development and pre-clinical evaluation of
nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated
with titanium dioxide (TiO2) nanotube arrays is reviewed. Cite this article:
Demineralised bone matrix (DBM) is rarely used for the local
delivery of prophylactic antibiotics. Our aim, in this study, was
to show that a graft with a bioactive glass and DBM combination,
which is currently available for clinical use, can be loaded with
tobramycin and release levels of antibiotic greater than the minimum
inhibitory concentration for Antibiotic was loaded into a graft and subsequently evaluated
for drug elution kinetics and the inhibition of bacterial growth.
A rat femoral condylar plug model was used to determine the effect
of the graft, loaded with antibiotic, on bone healing.Aims
Materials and Methods
Implant-associated infection is a major source
of morbidity in orthopaedic surgery. There has been extensive research
into the development of materials that prevent biofilm formation,
and hence, reduce the risk of infection. Silver nanoparticle technology
is receiving much interest in the field of orthopaedics for its
antimicrobial properties, and the results of studies to date are
encouraging. Antimicrobial effects have been seen when silver nanoparticles are
used in trauma implants, tumour prostheses, bone cement, and also
when combined with hydroxyapatite coatings. Although there are promising
results with Cite this article: