Although gradual bone transport may permit the
restoration of large-diameter bones, complications are common owing
to the long duration of external fixation. In order to reduce such
complications, a new technique of bone transport involving the use
of an external fixator and a locking plate was devised for segmental
tibial bone defects. A total of ten patients (nine men, one woman) with a mean age
at operation of 40.4 years (16 to 64) underwent distraction osteogenesis
with a locking plate to treat previously infected post-traumatic
segmental tibial defects. The locking plate was fixed percutaneously
to bridge proximal and distal segments, and was followed by external fixation.
After docking, percutaneous screws were fixed at the transported
segment through plate holes. At the same time, bone grafting was
performed at the docking site with the external fixator removed. The mean defect size was 5.9 cm (3.8 to 9.3) and mean external
fixation index was
13.4 days/cm (11.8 to 19.5). In all cases, primary union of the
docking site and distraction callus was achieved, with an excellent
bony result. There was no recurrence of deep infection or osteomyelitis,
and with the exception of one patient with a pre-existing peroneal
nerve injury, all achieved an excellent or good functional result. With short external fixation times and low complication rates,
bone transport with a locking plate could be recommended for patients
with segmental tibial defects. Cite this article:
Internal lengthening devices in the femur lengthen
along the anatomical axis, potentially creating lateral shift of
the mechanical axis. We aimed to determine whether femoral lengthening
along the anatomical axis has an inadvertent effect on lower limb
alignment. Isolated femoral lengthening using the Intramedullary
Skeletal Kinetic Distractor was performed in 27 femora in 24 patients
(mean age 32 years (16 to 57)). Patients who underwent simultaneous realignment
procedures or concurrent tibial lengthening, or who developed mal-
or nonunion, were excluded. Pre-operative and six-month post-operative
radiographs were used to measure lower limb alignment. The mean lengthening
achieved was 4.4 cm (1.5 to 8.0). In 26 of 27 limbs, the mechanical
axis shifted laterally by a mean of 1.0 mm/cm of lengthening (0
to 3.5). In one femur that was initially in varus, a 3 mm medial
shift occurred during a lengthening of 2.2 cm. In a normally aligned limb, intramedullary lengthening along
the anatomical axis of the femur results in a lateral shift of the
mechanical axis by approximately 1 mm for each 1 cm of lengthening.
We report the results of intramedullary leg lengthening conducted between 2002 and 2009 using the Intramedullary Skeletal Kinetic Distractor in 69 unilateral lengthenings involving 58 femora and 11 tibiae. We identified difficulties that occurred during the treatment and assessed whether they were specifically due to the implant or independent of it. Paley’s classification for evaluating problems, obstacles and complications with external fixators was adopted, and implant-specific difficulties were continuously noted. There were seven failures requiring premature removal of the device, in four due to nail breakage and three for other reasons, and five unsuccessful outcomes after completion of the lengthening. In all, 116 difficulties were noted in 45 patients, with only 24 having problem-free courses. In addition to the difficulties arising from the use of external fixators, there were almost the same number again of implant-specific difficulties. Nevertheless, successful femoral lengthening was achieved in 52 of the 58 patients (90%). However, successful tibial lengthening was only achieved in five of 11 patients (45%).
We present the results of the surgical correction of lower-limb deformities caused by metabolic bone disease. Our series consisted of 17 patients with a diagnosis of hypophosphataemic rickets and two with renal osteodystrophy; their mean age was 25.6 years (14 to 57). In all, 43 lower-limb segments (27 femora and 16 tibiae) were osteotomised and the deformity corrected using a monolateral external fixator. The segment was then stabilised with locked intramedullary nailing. In addition, six femora in three patients were subsequently lengthened by distraction osteogenesis. The mean follow-up was 60 months (18 to 120). The frontal alignment parameters (the mechanical axis deviation, the lateral distal femoral angle and the medial proximal tibial angle) and the sagittal alignment parameters (the posterior distal femoral angle and the posterior proximal tibial angle) improved post-operatively. The external fixator was removed either at the end of surgery or at the end of the lengthening period, allowing for early mobilisation and weight-bearing. We encountered five problems and four obstacles in the programme of treatment. The use of intramedullary nails prevented recurrence of deformity and refracture.