Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 11 - 19
1 Jul 2020
Shohat N Goswami K Tan TL Yayac M Soriano A Sousa R Wouthuyzen-Bakker M Parvizi J

Aims

Failure of irrigation and debridement (I&D) for prosthetic joint infection (PJI) is influenced by numerous host, surgical, and pathogen-related factors. We aimed to develop and validate a practical, easy-to-use tool based on machine learning that may accurately predict outcome following I&D surgery taking into account the influence of numerous factors.

Methods

This was an international, multicentre retrospective study of 1,174 revision total hip (THA) and knee arthroplasties (TKA) undergoing I&D for PJI between January 2005 and December 2017. PJI was defined using the Musculoskeletal Infection Society (MSIS) criteria. A total of 52 variables including demographics, comorbidities, and clinical and laboratory findings were evaluated using random forest machine learning analysis. The algorithm was then verified through cross-validation.


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 761 - 766
1 Jun 2016
Davis G Patel RP Tan TL Alijanipour P Naik TU Parvizi J

Aims

We aimed to assess the influence of ethnicity on the incidence of heterotopic ossification (HO) after total hip arthroplasty (THA).

Patients and Methods

We studied the six-month post-operative anteroposterior radiographs of 1449 consecutive primary THAs (1324 patients) and retrospectively graded them for the presence of HO, using the Brooker Classification.