An uncemented hemispherical acetabular component
is the mainstay of acetabular revision and gives excellent long-term
results. Occasionally, the degree of acetabular bone loss means that a
hemispherical component will be unstable when sited in the correct
anatomical location or there is minimal bleeding host bone left
for biological fixation. On these occasions an alternative method
of reconstruction has to be used. A major column structural allograft has been shown to restore
the deficient bone stock to some degree, but it needs to be off-loaded
with a reconstruction cage to prevent collapse of the graft. The
use of porous metal augments is a promising method of overcoming
some of the problems associated with structural allograft. If the defect
is large, the augment needs to be protected by a cage to allow ingrowth
to occur. Cup-cage reconstruction is an effective method of treating
chronic pelvic discontinuity and large contained or uncontained
bone defects. This paper presents the indications, surgical techniques and
outcomes of various methods which use acetabular reconstruction
cages for revision total hip arthroplasty. Cite this article:
The purpose of this study was to identify factors
that predict implant cut-out after cephalomedullary nailing of intertrochanteric
and subtrochanteric hip fractures, and to test the significance
of calcar referenced tip-apex distance (CalTAD) as a predictor for
cut-out. We retrospectively reviewed 170 consecutive fractures that had
undergone cephalomedullary nailing. Of these, 77 met the inclusion
criteria of a non-pathological fracture with a minimum of 80 days
radiological follow-up (mean 408 days; 81 days to 4.9 years). The
overall cut-out rate was 13% (10/77). The significant parameters in the univariate analysis were tip-apex
distance (TAD) (p <
0.001), CalTAD (p = 0.001), cervical angle
difference (p = 0.004), and lag screw placement in the anteroposterior
(AP) view (Parker’s ratio index) (p = 0.003). Non-significant parameters
were age (p = 0.325), gender (p = 1.000), fracture side (p = 0.507),
fracture type (AO classification) (p = 0.381), Singh Osteoporosis
Index (p = 0.575), lag screw placement in the lateral view (p =
0.123), and reduction quality (modified Baumgaertner’s method) (p = 0.575).
In the multivariate analysis, CalTAD was the only significant measurement
(p = 0.001). CalTAD had almost perfect inter-observer reliability
(interclass correlation coefficient (ICC) 0.901). Our data provide the first reported clinical evidence that CalTAD
is a predictor of cut-out. The finding of CalTAD as the only significant
parameter in the multivariate analysis, along with the univariate
significance of Parker’s ratio index in the AP view, suggest that
inferior placement of the lag screw is preferable to reduce the
rate of cut-out. Cite this article:
We report the use of porous metal acetabular
revision shells in the treatment of contained bone loss. The outcomes of
53 patients with
We conducted a systematic review and meta-analysis of randomised controlled trials comparing cross-linked with conventional polyethylene liners for total hip replacement in order to determine whether these liners reduce rates of wear, radiological evidence of osteolysis and the need for revision. The MEDLINE, EMBASE and COCHRANE databases were searched from their inception to May 2010 for all trials involving the use of cross-linked polyethylene in total hip replacement. Eligibility for inclusion in the review included the random allocation of treatments, the use of cross-linked and conventional polyethylene, and radiological wear as an outcome measure. The pooled mean differences were calculated for bedding-in, linear wear rate, three-dimensional linear wear rate, volumetric wear rate and total linear wear. Pooled risk ratios were calculated for radiological osteolysis and revision hip replacement. A search of the literature identified 194 potential studies, of which 12 met the inclusion criteria. All reported a significant reduction in radiological wear for cross-linked polyethylene. The pooled mean differences for linear rate of wear, three-dimensional linear rate of wear, volumetric wear rate and total linear wear were all significantly reduced for cross-linked polyethylene. The risk ratio for radiological osteolysis was 0.40 (95% confidence interval 0.27 to 0.58; I2 = 0%), favouring cross-linked polyethylene. The follow-up was not long enough to show a difference in the need for revision surgery.