Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Bone & Joint Research
Vol. 9, Issue 12 | Pages 848 - 856
1 Dec 2020
Ramalhete R Brown R Blunn G Skinner J Coathup M Graney I Sanghani-Kerai A

Aims

Periprosthetic joint infection (PJI) is a debilitating condition with a substantial socioeconomic burden. A novel autologous blood glue (ABG) has been developed, which can be prepared during surgery and sprayed onto prostheses at the time of implantation. The ABG can potentially provide an antimicrobial coating which will be effective in preventing PJI, not only by providing a physical barrier but also by eluting a well-known antibiotic. Hence, this study aimed to assess the antimicrobial effectiveness of ABG when impregnated with gentamicin and stem cells.

Methods

Gentamicin elution from the ABG matrix was analyzed and quantified in a time-dependent manner. The combined efficiency of gentamicin and ABG as an anti-biofilm coating was investigated on titanium disks.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 402 - 411
1 Aug 2020
Sanghani-Kerai A Coathup M Brown R Lodge G Osagie-Clouard L Graney I Skinner J Gikas P Blunn G

Aims

For cementless implants, stability is initially attained by an interference fit into the bone and osteo-integration may be encouraged by coating the implant with bioactive substances. Blood based autologous glue provides an easy, cost-effective way of obtaining high concentrations of growth factors for tissue healing and regeneration with the intention of spraying it onto the implant surface during surgery. The aim of this study was to incorporate nucleated cells from autologous bone marrow (BM) aspirate into gels made from the patient’s own blood, and to investigate the effects of incorporating three different concentrations of platelet rich plasma (PRP) on the proliferation and viability of the cells in the gel.

Methods

The autologous blood glue (ABG) that constituted 1.25, 2.5, and 5 times concentration PRP were made with and without equal volumes of BM nucleated cells. Proliferation, morphology, and viability of the cells in the glue was measured at days 7 and 14 and compared to cells seeded in fibrin glue.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 333 - 340
1 Jul 2020
Mumith A Coathup M Edwards TC Gikas P Aston W Blunn G

Aims

Limb salvage in bone tumour patients replaces the bone with massive segmental prostheses where achieving bone integration at the shoulder of the implant through extracortical bone growth has been shown to prevent loosening. This study investigates the effect of multidrug chemotherapy on extracortical bone growth and early radiological signs of aseptic loosening in patients with massive distal femoral prostheses.

Methods

A retrospective radiological analysis was performed on adult patients with distal femoral arthroplasties. In all, 16 patients were included in the chemotherapy group with 18 patients in the non-chemotherapy control group. Annual radiographs were analyzed for three years postoperatively. Dimensions of the bony pedicle, osseointegration of the hydroxyapatite (HA) collar surface, bone resorption at the implant shoulder, and radiolucent line (RLL) formation around the cemented component were analyzed.


Bone & Joint Research
Vol. 8, Issue 8 | Pages 397 - 404
1 Aug 2019
Osagie-Clouard L Sanghani-Kerai A Coathup M Meeson R Briggs T Blunn G

Objectives

Mesenchymal stem cells (MSCs) are of growing interest in terms of bone regeneration. Most preclinical trials utilize bone-marrow-derived mesenchymal stem cells (bMSCs), although this is not without isolation and expansion difficulties. The aim of this study was: to compare the characteristics of bMSCs and adipose-derived mesenchymal stem cells (AdMSCs) from juvenile, adult, and ovarectomized (OVX) rats; and to assess the effect of human parathyroid hormone (hPTH) 1-34 on their osteogenic potential and migration to stromal cell-derived factor-1 (SDF-1).

Methods

Cells were isolated from the adipose and bone marrow of juvenile, adult, and previously OVX Wistar rats, and were characterized with flow cytometry, proliferation assays, osteogenic and adipogenic differentiation, and migration to SDF-1. Experiments were repeated with and without intermittent hPTH 1-34.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 289 - 297
1 Apr 2018
Sanghani-Kerai A Osagie-Clouard L Blunn G Coathup M

Objectives

This study aimed to assess the effect of age and osteoporosis on the proliferative and differentiating capacity of bone-marrow-derived mesenchymal stem cells (MSCs) in female rats. We also discuss the role of these factors on expression and migration of cells along the C-X-C chemokine receptor type 4 (CXCR-4) / stromal derived factor 1 (SDF-1) axis.

Methods

Mesenchymal stem cells were harvested from the femora of young, adult, and osteopenic Wistar rats. Cluster of differentiation (CD) marker and CXCR-4 expression was measured using flow cytometry. Cellular proliferation was measured using Alamar Blue, osteogenic differentiation was measured using alkaline phosphatase expression and alizarin red production, and adipogenic differentiation was measured using Oil red O. Cells were incubated in Boyden chambers to quantify their migration towards SDF-1. Data was analyzed using a Student’s t-test, where p-values < 0.05 were considered significant.


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 455 - 460
1 Apr 2018
Mumith A Thomas M Shah Z Coathup M Blunn G

Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research.

This review describes the current position in the use of additive manufacturing in orthopaedic surgery.

Cite this article: Bone Joint J 2018;100-B:455-60.


Bone & Joint Research
Vol. 6, Issue 6 | Pages 358 - 365
1 Jun 2017
Sanghani-Kerai A Coathup M Samazideh S Kalia P Silvio LD Idowu B Blunn G

Objectives

Cellular movement and relocalisation are important for many physiologic properties. Local mesenchymal stem cells (MSCs) from injured tissues and circulating MSCs aid in fracture healing. Cytokines and chemokines such as Stromal cell-derived factor 1(SDF-1) and its receptor chemokine receptor type 4 (CXCR4) play important roles in maintaining mobilisation, trafficking and homing of stem cells from bone marrow to the site of injury. We investigated the differences in migration of MSCs from the femurs of young, adult and ovariectomised (OVX) rats and the effect of CXCR4 over-expression on their migration.

Methods

MSCs from young, adult and OVX rats were put in a Boyden chamber to establish their migration towards SDF-1. This was compared with MSCs transfected with CXCR4, as well as MSCs differentiated to osteoblasts.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 276 - 282
1 Feb 2017
Mumith A Coathup M Chimutengwende-Gordon M Aston W Briggs T Blunn G

Aims

Massive endoprostheses rely on extra-cortical bone bridging (ECBB) to enhance fixation. The aim of this study was to investigate the role of selective laser sintered (SLS) porous collars in augmenting the osseointegration of these prostheses.

Materials and Methods

The two novel designs of porous SLS collars, one with small pores (Ø700 μm, SP) and one with large pores (Ø1500 μm, LP), were compared in an ovine tibial diaphyseal model. Osseointegration of these collars was compared with that of a clinically used solid, grooved design (G). At six months post-operatively, the ovine tibias were retrieved and underwent radiological and histological analysis.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 14 - 21
1 Jan 2017
Osagie-Clouard L Sanghani A Coathup M Briggs T Bostrom M Blunn G

Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect.

Cite this article: L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14–21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 246 - 253
1 Feb 2008
Coathup M Smith N Kingsley C Buckland T Dattani R Ascroft GP Blunn G

An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p > 0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p < 0.05). The results for the area of new bone formation demonstrated no significant differences (p > 0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p > 0.05) and percentage ApaPore-bone contact (p > 0.05).

The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.