There are many causes of paraspinal muscle weakness which give rise to the dropped-head syndrome. In the upper cervical spine the central portion of the spinal cord innervates the cervical paraspinal muscles. Dropped-head syndrome resulting from injury to the central spinal cord at this level has not previously been described. We report two patients who were treated acutely for this condition. Both presented with weakness in the upper limbs and paraspinal cervical musculature after a fracture of C2. Despite improvement in the strength of the upper limbs, the paraspinal muscle weakness persisted in both patients. One ultimately underwent cervicothoracic fusion to treat her dropped-head syndrome. While the cause of the dropped-head syndrome cannot be definitively ascribed to the injuries to the spinal cord, this pattern is consistent with the known patho-anatomical mechanisms of both injury to the central spinal cord and dropped-head syndrome.
We have examined the outcome in 19 professional rugby union players who underwent anterior cervical discectomy and fusion between 1998 and 2003. Through a retrospective review of the medical records and telephone interviews of all 19 players, we have attempted to determine the likelihood of improvement, return to professional sport and the long-term consequences. We have also attempted to relate the probability of symptoms in the neck and radicular pain in the arm to the position of play. Neck and radicular pain were improved in 17 patients, with 13 returning to rugby, the majority by six months after operation. Of these, 13 returned to their pre-operative standard of play, one to a lower level and five have not played rugby again. Two of those who returned to the game have subsequently suffered further symptoms in the neck, one of whom was obliged to retire. The majority of the players with problems in the neck were front row forwards. A return to playing rugby union after surgery and fusion of the anterior cervical spine is both likely and safe and need not end a career in the game.
We carried out a prospective study to determine whether the addition of a recombinant human bone morphogenetic protein (rhBMP-2) to a machined allograft spacer would improve the rate of intervertebral body fusion in the spine. We studied 77 patients who were to undergo an interbody fusion with allograft and instrumentation. The first 36 patients received allograft with adjuvant rhBMP-2 (allograft/rhBMP-2 group), and the next 41, allograft and demineralised bone matrix (allograft/demineralised bone matrix group). Each patient was assessed clinically and radiologically both pre-operatively and at each follow-up visit using standard methods. Follow-up continued for two years. Every patient in the allograft/rhBMP-2 group had fused by six months. However, early graft lucency and significant (>
10%) subsidence were seen radiologically in 27 of 55 levels in this group. The mean graft height subsidence was 27% (13% to 42%) for anterior lumbar interbody fusion, 24% (13% to 40%) for transforaminal lumbar interbody fusion, and 53% (40% to 58%) for anterior cervical discectomy and fusion. Those who had undergone fusion using allograft and demineralised bone matrix lost only a mean of 4.6% (0% to 15%) of their graft height. Although a high rate of fusion (100%) was achieved with rhBMP-2, significant subsidence occurred in more than half of the levels (23 of 37) in the lumbar spine and 33% (6 of 18) in the cervical spine. A 98% fusion rate (62 of 63 levels) was achieved without rhBMP-2 and without the associated graft subsidence. Consequently, we no longer use rhBMP-2 with allograft in our practice if the allograft has to provide significant structural support.