Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Bone & Joint Open
Vol. 1, Issue 9 | Pages 585 - 593
24 Sep 2020
Caterson J Williams MA McCarthy C Athanasou N Temple HT Cosker T Gibbons M

Aims

The aticularis genu (AG) is the least substantial and deepest muscle of the anterior compartment of the thigh and of uncertain significance. The aim of the study was to describe the anatomy of AG in cadaveric specimens, to characterize the relevance of AG in pathological distal femur specimens, and to correlate the anatomy and pathology with preoperative magnetic resonance imaging (MRI) of AG.

Methods

In 24 cadaveric specimens, AG was identified, photographed, measured, and dissected including neurovascular supply. In all, 35 resected distal femur specimens were examined. AG was photographed and measured and its utility as a surgical margin examined. Preoperative MRIs of these cases were retrospectively analyzed and assessed and its utility assessed as an anterior soft tissue margin in surgery. In all cadaveric specimens, AG was identified as a substantial structure, deep and separate to vastus itermedius (VI) and separated by a clear fascial plane with a discrete neurovascular supply. Mean length of AG was 16.1 cm ( ± 1.6 cm) origin anterior aspect distal third femur and insertion into suprapatellar bursa. In 32 of 35 pathological specimens, AG was identified (mean length 12.8 cm ( ± 0.6 cm)). Where AG was used as anterior cover in pathological specimens all surgical margins were clear of disease. Of these cases, preoperative MRI identified AG in 34 of 35 cases (mean length 8.8 cm ( ± 0.4 cm)).


Bone & Joint Open
Vol. 1, Issue 8 | Pages 474 - 480
10 Aug 2020
Price A Shearman AD Hamilton TW Alvand A Kendrick B

Introduction

The aim of this study is to report the 30 day COVID-19 related morbidity and mortality of patients assessed as SARS-CoV-2 negative who underwent emergency or urgent orthopaedic surgery in the NHS during the peak of the COVID-19 pandemic.

Method

A retrospective, single centre, observational cohort study of all patients undergoing surgery between 17 March 2020 and 3May 2020 was performed. Outcomes were stratified by British Orthopaedic Association COVID-19 Patient Risk Assessment Tool. Patients who were SARS-CoV-2 positive at the time of surgery were excluded.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 414 - 419
1 Mar 2014
Kodumuri P Ollivere B Holley J Moran CG

We evaluated the top 13 journals in trauma and orthopaedics by impact factor and looked at the longer-term effect regarding citations of their papers.

All 4951 papers published in these journals during 2007 and 2008 were reviewed and categorised by their type, subspecialty and super-specialty. All citations indexed through Google Scholar were reviewed to establish the rate of citation per paper at two, four and five years post-publication. The top five journals published a total of 1986 papers. Only three (0.15%) were on operative orthopaedic surgery and none were on trauma. Most (n = 1084, 54.5%) were about experimental basic science. Surgical papers had a lower rate of citation (2.18) at two years than basic science or clinical medical papers (4.68). However, by four years the rates were similar (26.57 for surgery, 30.35 for basic science/medical), which suggests that there is a considerable time lag before clinical surgical research has an impact.

We conclude that high impact journals do not address clinical research in surgery and when they do, there is a delay before such papers are cited. We suggest that a rate of citation at five years post-publication might be a more appropriate indicator of importance for papers in our specialty.

Cite this article: Bone Joint J 2014;96-B:414–19.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 1 | Pages 10 - 15
1 Jan 2012
Ollivere B Wimhurst JA M. Clark I Donell ST

The most frequent cause of failure after total hip replacement in all reported arthroplasty registries is peri-prosthetic osteolysis. Osteolysis is an active biological process initiated in response to wear debris. The eventual response to this process is the activation of macrophages and loss of bone.

Activation of macrophages initiates a complex biological cascade resulting in the final common pathway of an increase in osteolytic activity. The biological initiators, mechanisms for and regulation of this process are beginning to be understood. This article explores current concepts in the causes of, and underlying biological mechanism resulting in peri-prosthetic osteolysis, reviewing the current basic science and clinical literature surrounding the topic.